Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf die Markierung kommt es an

12.10.2012
Wissenschaftler des Exzellenzclusters Mikroskopie im Nanometerbereich etablieren biologische Marker für die Darstellung kleinster molekularer Prozesse in lebenden Zellen. Veröffentlichung der Studie in NATURE METHODS.

Modernste optische Technologien wie die Stimulated Emission Depletion (STED) Mikroskopie erlauben einen faszinierenden Blick in das Innere le-bender Zellen.


STED-mikroskopische Aufnahmen zeigen eine deutlich bessere Auflösung endosomaler Strukturen nach Markierung mit einem Tfn Rezeptor-spezifischen Aptamer (rechts) im Vergleich zur Verwendung eines entsprechenden Antikörpers (links). Abb.: cmpb

Kleinste Strukturen und molekulare Abläufe lassen sich mit Hilfe dieser Technologie exakt darstellen. Sogar einzelne Moleküle in Zellen werden sichtbar und ihre Bewegungen lassen sich unter dem STED-Mikroskop in Echtzeit verfolgen. Und doch waren bisher auch der hochauflösenden STED-Mikroskopie Grenzen gesetzt.

Der Grund: Wirklich erkennbar werden einzelne Moleküle erst dann, wenn sie sich vorher erfolgreich mit geeigneten Farbstoffen markieren lassen. Konventionelle Antikörper, die in der Regel für die spezifische Markierung von Molekülen genutzt werden, sind jedoch oft zu groß, um an schwer zugängliche Moleküle andocken zu können.

Den Forschern Prof. Dr. Silvio O. Rizzoli und Dr. Felipe Opazo vom European Neuroscience Institut (ENI) und dem Exzellenzcluster „Mikroskopie im Nanometerbereich“ am DFG-Forschungszentrum Molekularphysiologie des Gehirns (CMPB) der Universitätsmedizin Göttingen ist es nun gelungen, geeignete Marker zu identifizieren, die kleiner sind als Antikörper. In ihrer jüngsten Publikation beschreiben sie den Ein-satz von sogenannten Aptameren.

Ihre geringe Größe erlaubt es, an deutlich mehr Strukturen zu binden, die in lebenden Zellen für Antikörper nicht oder nur schwer zugänglich sind. In Kombination mit der STED-Mikroskopie kann durch Verwendung solcher Aptamere eine noch exaktere Auflösung zellulärer Strukturen erreicht werden als bisher. Die Forschungsergebnisse sind im Oktober 2012 in der renommierten wissenschaftlichen Fachzeitschrift NATURE METHODS veröffentlicht worden.

„Molekulare Marker müssen eine sehr effiziente Bindung sowie eine hohe Stabilität aufweisen, um einzelne Zielmoleküle exakt darstellen zu können. Diese Kriterien erfül-len die Aptamere perfekt“, sagt Dr. Opazo, Erst-Autor der Publikation. Bei Aptameren handelt es sich um kleine einzelsträngige Nukleinsäuremoleküle. Ähnlich dem Schlüssel-Schloss-Prinzip erkennen und binden sie passgenau an zelluläre Zielstrukturen. Eine ähnlich hohe Effektivität konnte bisher nur mit Antikörpern erreicht werden.

In Zusammenarbeit mit Wissenschaftlern des Max-Planck Instituts für Biophysikalische Chemie und des Laser Laboratoriums in Göttingen sowie der Universität Erlangen, des Albert Einstein College of Medicine in New York und der University of Texas konnten die Göttinger Forscher belegen: Die Markierung durch Aptamere verbessert die optische Auflösung von Zielmolekülen mittels STED-Mikroskopie gegenüber konventionellen Antikörpern erheblich. Zudem können Aptamere deutlich kostengünstiger, in beliebiger Größe und ohne den Einsatz von Tierversuchen mit Standard-Laborequipment chemisch synthetisiert werden.

„Dies und ihre Fähigkeit, Zielstrukturen direkt zu binden, hebt sie auch von den erst kürzlich im Zusammenhang mit hochauflösender Mikroskopie beschriebenen Nanobodies ab“, sagt Prof. Dr. Silvio Rizzoli, Senior-Autor der Publikation. Besonders kleine Aptamere binden dabei besser an schwer zugängliche Strukturen und zeigen eine erhöhte Spezifität. Als Zielstrukturen dienten Moleküle, die bei der Bewegung von Endosomen eine Rolle spielen, die für die Zell-Zell-Kommunikation wichtig sind. Spektakuläre Abbildungen aus der Arbeit von Dr. Opazo zeigen, dass nun sogar kleinste endosomale Strukturen in hoher Auflösung visualisiert und deren Bewegungen in lebenden Zellen verfolgt werden können.

Der erfolgreiche Einsatz von Aptameren für die spezifische Markierung kleinster Ziel-moleküle in unterschiedlichen Zellsystemen bedeutet einen weiteren Fortschritt für die Anwendung hoch-auflösender bildgebender Verfahren. Aptamere wurden zudem bereits im Vorfeld erfolgreich für das gezielte Ausschalten von Genen und in der Krebstherapie angewandt.

Originalpublikation:
Felipe Opazo, Matthew Levy, Michelle Byrom, Christina Schäfer, Claudia Geisler, Teja W. Groemer, Andrew D. Ellington and Silvio O. Rizzoli. Aptamers as potential tools for super-resolution microscopy. NATURE METHODS (2012) Oct, 9(10):938-9 WEITERE ANGABEN Link: http://www.ncbi.nlm.nih.gov/pubmed/23018995.

Das Exzellenzcluster „Mikroskopie im Nanometerbereich“ (EXC 171) wurde 2006 als Erweiterung des DFG-Forschungszentrums Molekularphysiologie des Gehirns (CMPB) an der Universitätsmedizin Göttingen eingerichtet. Aufgrund der äußerst erfolgreichen Allianz von EXC 171 und CMPB in den vergangenen Jahren wurde eine gemeinsame Fortsetzung der Förderung im Rahmen der 2. Runde der Exzellenzinitiative des Bundes und der Länder bewilligt. Unter dem Titel Exzellenzcluster „Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns“ (CNMPB) wird die hochkarätige Forschung im Bereich der Neurowissenschaften und Mikroskopie auch in den nächsten fünf Jahren fortgeführt.

INFORMATIONEN
zum ENI: http://www.eni.gwdg.de
zum Exzellenzcluster/CMPB: http://www.cmpb.de
zur Arbeitsgruppe von Dr. Rizzoli: http://www.eni.gwdg.de/index.php?id=199&L=0
WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen
AG STED Microscopy of Synpatic Function, European Neuroscience Institut (ENI)
Dr. Felipe Opazo, Mail: fopazo@gwdg.de
Prof. Dr. Silvio O. Rizzoli, Mail: srizzol@gwdg.de
Telefon 0551 / 39-3630
Grisebachstr. 5, 37077 Göttingen

Stefan Weller | idw
Weitere Informationen:
http://www.gwdg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics