Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtschalter im Gehirn

18.01.2013
Forscher haben ein Implantat entwickelt, das mithilfe eines Lasers einzelne Nervenzellen steuert

Nervenzellen gezielt ein- und ausschalten: Diese Fähigkeit wünschen sich viele Neurowissenschaftlerinnen und Neurowissenschaftler, um besser zu verstehen, wie das Gehirn funktioniert.


siehe Bild
Quelle: IMTEK / Universität Freiburg

Forscherinnen und Forscher aus Freiburg und Basel/Schweiz haben nun ein Implantat entwickelt, das erstmals punktgenau Nervenzellen im Gehirn genetisch verändern, mit Lichtreizen steuern und gleichzeitig die Aktivität der Zellen messen kann. Das 3-in-1-Gerät soll völlig neue Studien ermöglichen – auch im Rahmen des Freiburger Exzellenzclusters BrainLinks-BrainTools.

Birthe Rubehn und ihre Kollegen vom Institut für Mikrosystemtechnik (IMTEK) und dem Bernstein Center der Universität Freiburg sowie dem Friedrich Miescher Institute for Biomedical Research in Basel beschreiben den Prototypen ihres Mikroimplantats in der Fachzeitschrift „Lab on a Chip“. Sie berichten, dass erste Experimente, bei denen sie den Prototyp Mäusen eingesetzt haben, erfolgreich verlaufen sind: Das Forschungsteam konnte mit dem Gerät durch Lichtimpulse Nervenzellen im Gehirn gezielt in ihrer Aktivität beeinflussen.

Dass die Forscher Nervenzellen mithilfe von Licht verschiedener Farbe in ihrer Aktivität hemmen und erregen können, ist einer neuartigen gentechnischen Methode zu verdanken. In der so genannten Optogenetik werden Gene aus bestimmten Algen in die Erbinformation eines anderen Lebewesens, beispielsweise einer Maus, eingeschleust. Die Gene erzeugen lichtgesteuerte Poren für geladene Teilchen in der Zellmembran. Diese zusätzlichen Durchlässe erlauben es, die elektrische Aktivität der Zellen zu steuern. Doch erst das neue Implantat aus Freiburg und Basel macht dieses Prinzip für Neurowissenschaftler anwendbar.

Sie haben das Gerät, weniger als ein Viertelmillimeter breit und etwa ein Zehntelmillimeter hoch, auf Polymerbasis entwickelt – aus speziellen Kunststoffen, deren Verträglichkeit für den Kontakt mit dem Gehirn belegt ist. Und im Gegensatz zu bisher entwickelten Sonden kann es am selben Ort für die genetische Veränderung nötige Substanzen einspritzen, Licht zur Steuerung der Zellen abgeben und den Effekt an mehreren elektrischen Kontakten messen. Neben der Serienfertigung strebt das Team nun eine zweite Version an, bei der sich der Flüssigkeitskanal für die gentechnischen Substanzen später auflöst und das Implantat dadurch noch kleiner wird.

Originalveröffentlichung:
Rubehn, B., Wolff S.B.E., Tovote P., Lüthi A. und Stieglitz T. (2013): A polymer-based neural microimplant for optogenetic applications: design and first in vivo study. Lab Chip, advance article, DOI: 10.1039/C2LC40874K

Kontakt:
Prof. Dr. Thomas Stieglitz
Lehrstuhl für Biomedizinische Mikrotechnik
Institut für Mikrosystemtechnik (IMTEK)
Tel.: 0761/203-7471
Fax: 0761/203-7472
E-Mail: thomas.stieglitz@imtek.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Weitere Informationen:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/pm/2013/pm.2013-01-18.14-en?set_language=en

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

nachricht Spezialisten-Zellen helfen Gedächtnis auf die Sprünge
17.03.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie