Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leukämie: Auf dem Weg zur individualisierten Therapie

20.05.2010
Goethe-Universität setzt europaweit Akzente bei Forschung und Diagnostik

Leukämie ist, wie andere Krebsarten auch, eine Folge von Mutationen bestimmter Gene. Noch vor wenigen Jahrzehnten war die Diagnose Blutkrebs ein sicheres Todesurteil. Dass heute viele Leukämiekranke geheilt werden können, ist unter anderem der genauen Kenntnis der zugrunde liegenden Gendefekte zu verdanken, aus denen sich eine individualisierte Therapie ableiten lässt.

Am „Diagnostikzentrum für Akute Leukämie“ der Goethe-Universität sind in den vergangenen fünf Jahren 30 neue Krebsgene entdeckt worden. Seit Herbst 2009 müssen alle europäischen Studiengruppen die Behandlung ihrer Leukämiepatienten mit Hilfe der in Frankfurt entwickelten Gensonden engmaschig überwachen lassen. In der aktuellen Ausgabe von „Forschung Frankfurt“ berichten der Grundlagenforscher Prof. Rolf Marschalek und der Kliniker Prof. Hubert Serve über den Stand der Forschung.

Während man bei soliden Tumoren davon ausgeht, dass rund 20 Ereignisse notwendig sind, um aus einer normalen Zelle eine Tumorzelle zu machen, ist dies bei Leukämien wahrscheinlich ganz anders: hier reichen wenige Mutationen aus, um eine leukämische Zelle zu erhalten. Ein bevorzugter Mutationsmechanismus bei den Leukämien ist die „chromosomale Translokation“. Dabei brechen zwei Chromosomen auseinander und setzen ihre losen Enden überkreuz wieder zusammen, so dass jedes Chromosom ein Stück des anderen erhält.

Da bei verschiedenen Leukämiepatienten immer wieder die gleichen chromosomalen Translokationen beobachtet wurden, glauben viele Wissenschaftler, aus der Analyse dieser Fusionsgene lernen zu können, wie Leukämien entstehen und sie dann auch behandeln zu können. In den letzten 20 Jahren sind daher rund 400 verschiedene Translokationen analysiert worden. Die Arbeitsgruppe von Prof. Rolf Marschalek am Institut für Pharmazeutische Biologie arbeitet vor allem an MLL-Translokationen, die alle mit akuter Leukämie assoziiert sind. Eine dieser Translokation, bei der ein Stück zwischen Chromosom 4 und Chromosom 11 ausgetauscht wird, ist besonders aggressiv. Sie tritt bei 70 bis 80 Prozent aller Kleinkinder mit einer Akuten Lymphatischen Leukämie (ALL) auf.

Neben der Grundlagenforschung zu dieser speziellen Leukämieform leitet Prof. Rolf Marschalek zusammmen mit Prof. Theo Dingermann und Prof. Thomas Klingebiel auch das Diagnostikzentrum „Diagnostikzentrum für Akute Leukämie“ (DCAL). Hier werden bis zu 100 verschiedene MLL-Translokationen, aber auch andere Genfusionen identifiziert und charakterisiert. Das ist nicht nur für die Ursachenforschung von Bedeutung, sondern hat auch einen praktischen Nutzen: die hier etablierten Gensonden werden für die Verlaufskontrolle einer Therapie an Leukämiepatienten benutzt. Im DCAL werden unter der Leitung von Prof. Rolf Marschalek jedes Jahr circa 300 Leukämiefälle aus ganz Europa befundet. Der Blick auf den Anknüpfungspunkt der Fusionsgene liefert eine Patienten-spezifische DNA-Sequenz, die einen molekularen Fingerabdruck darstellt. Über diesen Fingerabdruck lassen sich kleinste Mengen an Tumorzellen im Patienten nachweisen, selbst wenn auf 150 000 normale Zellen nur noch eine entartete Zelle kommt. Alle europäischen Studiengruppen überwachen deshalb die Behandlung ihrer Leukämiepatienten mithilfe der von Marschalek generierten Gensonden. Dadurch kann das unerwünschte Wiederauftreten des Tumors rechtzeitig erkannt und die Behandlung entsprechend angepasst oder optimiert werden. Das hilft das Überleben solcher schwer erkrankten Patienten weiter zu optimieren.

Zu den ermutigenden Beispielen für eine erfolgreiche Therapie gehört die Gabe von Imatinib bei der Chronischen Myeloischen Leukämie (CML). Auch hier ist ein pathologisches Fusionsgen die Ursache. Wird dieses abgelesen, wirkt die entstehende Kinase als unkontrollierter Teilungsstimulator der leukämischen Zellen. Imatinib hemmt die Aktivität des Gens. Die Verbindung, die als Tablette eingenommen werden kann, hilft heute über 95 Prozent der Patienten, mit CML über lange Jahre krankheits- und symptomfrei zu leben. Frankfurter Wissenschaftler waren weltweit führend daran beteiligt zu zeigen, dass nicht nur CML-Patienten, sondern auch Patienten mit einem bestimmten Typ der Akuten Lymphatischen Leukämie von Imatinib profitieren.

Am Zentrum der Inneren Medizin untersuchen die Forscher um Prof. Hubert Serve als Koordinatoren des bundesweiten Forschungsverbunds „Onkogene Netzwerke in der Pathogenese der AML“ die Signalübertragung in leukämischen Vorläuferzellen des Knochenmarks. Schon seit den frühen 1990er Jahren, also lange vor dem Mut machenden „Proof of concept“ von Imatinib, versuchten sie, die Akute Myeloische Leukämie (AML) mit Kinase-Inhibitoren zu behandeln. Sie gehörten zu den Ersten, die zu dieser Zeit erkannten, dass Kinase-Mutationen in der AML häufig und für den Verlauf der Krankheit von Bedeutung sind. Gegen die Kinasen, die bei der AML aktiv sind, ist Imatinib leider unwirksam. Daher suchen die Forscher nach anderen Wirkstoffen und interessanten Zielmolekülen. Mehrere Inhibitoren werden bereits in klinischen Studien geprüft, einige unter Leitung der Goethe-Universität. „Ich bin zuversichtlich, dass in Zukunft auch die AML mit kleinen Molekülen und einer Kombination aus Chemotherapie und Knochenmarktransplantation viel häufiger geheilt werden kann, als das bisher der Fall ist“, urteilt Prof. Serve.

Der Schwerpunkt für Lymphom- und Leukämieforschung profitiert besonders von der engen Zusammenarbeit zwischen Medizinern und Naturwissenschaftlern im Loewe-Schwerpunktprojekt „Onkogene Signaltransduktion Frankfurt“ (Projektträger Land Hessen). Die gemeinsame Forschung an hämatologischen und soliden Tumoren soll die Suche nach neuen krebsauslösenden Prinzipien in den Tumorzellen vereinfachen und spezifische Tumortherapien schneller in die Klinik bringen. Für eine schnelle Umsetzung steht auch das „Universitäre Centrum für Tumorerkrankungen Frankfurt (UCT)“, in dem sich die Krebsforscher und klinischen Onkologen des Universitätsklinikums zusammengeschlossen haben, um gemeinsam Krebs- und Leukämie-Patienten die optimale Therapie anbieten zu können. Das UCT wurde von der Deutschen Krebshilfe in einerm Wettbewerb als eines von 10 deutschen Zentren als „Onkologisches Spitzenzentrum“ ausgewählt und wird von ihr in seinem Anliegen großzügig unterstützt.

Neben der Förderung der patientenorientierten Krebsforschung soll das Zentrum alle vor Ort vorhandenen Expertisen bündeln, einschließlich der in den Krankenhäusern und Praxen der Region vorhandenen. Ziel ist es, dass alle Einrichtungen nach den gleichen Behandlungsleitlinien und mit der gleichen Qualitätssicherung arbeiten. Das sicher ehrgeizigste Projekt ist ein regionales klinisches Krebsregister, mit dessen Hilfe Behandlungsstrategien optimiert werden sollen. Mit der Förderung des UCT hat die Universität bereits ein Gütesiegel von hoher Sichtbarkeit erhalten. Nun sollen aus diesen gebündelten Aktivitäten neue Forschungsverbünde initiiert werden. Frankfurt macht sich daran, eine Hochburg für die Krebsforschung und -therapie zu werden.

Informationen: Prof. Rolf Marschalek, Institut für Pharmazeutische Biologie, Campus Riedberg, Tel.: (069) 798-29647, Rolf.marschalek@em.uni-frankfurt.de.
Prof. Hubert Serve, Medizinische Klinik II, Klinikum der Goethe-Universität, Tel. (069) 6301-5194, serve@em.uni-frankfurt.de.
„Forschung Frankfurt“ kostenlos bestellen: ott@pvw.uni-frankfurt.de.
FF online unter: http://www.forschung-frankfurt.uni-frankfurt.de/2010/index.html
Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.
Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 - 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de
http://www.forschung-frankfurt.uni-frankfurt.de/2010/index.html

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie