Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lauftraining lässt defekte Nerven-Stammzellen reifen

04.07.2013
Ursache des CHARGE-Syndroms, einer schweren Entwicklungsstörung, ist ein genetischer Defekt. Wissenschaftler aus dem Deutschen Krebsforschungszentrum veröffentlichten nun in der Fachzeitschrift Cell Stem Cell, dass diese Mutation die Reifung von Nerven-Stammzellen blockiert. Das erklärt, warum CHARGE-Patienten geistig beeinträchtigt sind und Lernschwierigkeiten haben. Die DKFZ-Forscher zeigten an Mäusen, dass Lauftraining den Stammzelldefekt kompensiert.

Dem CHARGE Syndrom*, einer angeborenen Entwicklungsstörung, liegt ein genetischer Defekt zugrunde. Er führt zu charakteristischen Missbildungen in verschiedenen Organen. Weltweit ist etwa eins von 8500 Neugeborenen betroffen. Der typische Defekt im Gen CHD7 entsteht meist spontan, wird also nicht von den Eltern vererbt.


Neu entstandenes Neuron in Gehirn einer Maus. Haikun Liu, Deutsches Krebsforschungszentrum

Dr. Haikun Liu erforscht mit seiner Nachwuchsgruppe im Deutschen Krebsforschungszentrum die Regulation adulter Stammzellen im zentralen Nervensystem. Die Wissenschaftler untersuchen die Rolle dieser Zellen bei verschiedenen Erkrankungen, etwa bei geistiger Behinderung oder Hirntumoren. CHARGE-Patienten sind intellektuell beeinträchtigt und haben Lernschwierigkeiten –Liu und Kollegen wollten nun klären, ob bei dieser Krankheit auch ein Defekt im zentralen Nervensystem eine Rolle spielt.

Um zu verstehen, welche molekulare Rolle eine CHD7-Mutation bei der Entstehung des charakteristischen Krankheitsbilds spielt, züchteten die Forscher mit molekularbiologischen Methoden spezielle Mäuse, deren CHD7-Gen in den Nerven-Stammzellen spezifisch ausgeschaltet werden kann. So lässt sich während des ganzen Lebens der Maus beobachten, wie Stammzellen ohne CHD7 wachsen, differenzieren und ausreifen.

Unabhängig davon, ob die Forscher die CHD7-Produktion erst in den Stammzellen erwachsener Mäuse ausschalteten oder bereits im embryonalen Gehirn – die Auswirkung war dieselbe: Die Zellen konnten nicht mehr zu reifen Nervenzellen ausdifferenzieren. Normale reife Nervenzellen bilden komplexe Netzwerke untereinander aus, die zentral für die Informationsverarbeitung im Gehirn sind. Neurone dagegen, die aus den Stammzellen mit blockierter CHD7-Produktion hervorgehen, sind genau dazu nicht in der Lage.

Besonders beeindruckt waren Liu und sein Team, dass körperliches Training den CHD7-Defekt kompensiert: Durften die genveränderten Mäuse in einem Laufrad rennen, was alle Nagetiere mit Begeisterung tun, so normalisierten sich ihre Nervenzellen sowohl funktionell als auch morphologisch und bildeten funktionierende Netzwerke aus.

Dass Lauftraining die Entstehung neuer Nervenzellen im erwachsenen Organismus dramatisch steigert, hatten Wissenschaftler auch schon beim Menschen gezeigt. „Wir waren aber verblüfft, dass das Training sogar den CHD7-Defekt kompensieren kann und wollen nun unbedingt aufklären, welcher molekulare Mechanismus dahintersteckt“, sagt Haikun Liu. Er geht davon aus, dadurch sogar Ansätze zur Behandlung bestimmter Symptome der schweren Erkrankung finden zu können.

CHD7 kodiert für ein Protein, das dafür sorgt, dass Gene abgelesen werden können. Im Zellkern wird die DNA zusammen mit Proteinen zu perlenförmigen „Nukleosomen“ aufgewickelt. Diese Perlschnur wiederum verdrillt sich zum Chromatin, dem Material, aus dem die Chromosomen bestehen. So genannte „Chromatin Remodeler“ zu denen auch CHD7 zählt, sind wichtige Steuerelemente der Genaktivität. Sie halten die Schaltregionen der einzelnen Gene frei von Nukleosomen und damit zugänglich für die Proteine, die das Gen ablesen. Daher kann eine Mutation in einem Chromatin Remodeler dazu führen, dass ein breites Spektrum von Genen fehlreguliert wird.

CHD7 ist außerdem als Krebsgen bekannt, das bei zahlreichen Tumorerkrankungen des Menschen, darunter Hirntumoren, Lungen- und Darmkrebs, verändert ist. Da Differenzierungs-Blockaden von Stammzellen, wie sie durch den CHD7-Defekt entstehen, eine bekannte Ursache für die Krebsentstehung sind, haben Liu und Kollegen mit ihrer Arbeit zugleich dargelegt, auf welche Weise defektes CHD7 zu Krebs führen kann.

Darüber hinaus gelten CHD7-Defekte auch als Risikofaktor für Autismus, und viele CHARGE-Patienten sind tatsächlich Autisten. Offenbar spielt dieses Gen bei einer Vielfalt an Vorgängen in unserem Körper eine wichtige Rolle. „Mit unserem Maus-Modell können wir nun auch in anderen Zelltypen mitverfolgen, was passiert, wenn wir CHD7 abschalten. Davon erwarten wir aufschlussreiche Ergebnisse über die Rolle von CHD7 bei den verschiedenen Erkrankungen.“, sagt Haikun Liu.

*CHARGE: Coloboma of the eye, Heart defects, Atresia of the choanae, severe Retardation of growth and development, Genital abnormalities, and Ear abnormalities

Weijung Feng, Muhammad Amir Khan, Pablo Bellvis, Zhe Zhu, Olga Bernhardt, Christel Herold-Mende und Haikun Liu: The Chromatin Remodeller CHD7 regulates Neurogenesis via Activation of SoxC Transcription Factors. Cell Stem Cell 2013, DOI: 10.1016/j.stem.2013.05.002

Ein Bild zur Pressemitteilung steht im Internet zur Verfügung unter:
http://www.dkfz.de/de/presse/pressemitteilungen/2013/images/Liu_newborn_neuron
_adult-_Mouse.jpg
Legende: Neu entstandenes Neuron in Gehirn einer Maus. Haikun Liu, Deutsches Krebsforschungszentrum

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 2.500 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
D-69120 Heidelberg
T: +49 6221 42 2854
F: +49 6221 42 2968
presse@dkfz.de
Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
D-69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
presse@dkfz.de

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de/pressemitteilungen

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Sind Epilepsie-Patienten wetterfühlig?
23.05.2017 | Universitätsklinikum Jena

nachricht Dual-Layer Spektral-CT: Bessere Therapieplanung beim Bauchspeicheldrüsenkrebs
18.05.2017 | Deutsche Röntgengesellschaft e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie