Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wieder laufen nach Rückenmarksverletzung

01.06.2012
Einem ehemaligen Neurologen der Universität Zürich gelingt es, Ratten mit Rückenmarksverletzungen und schweren Lähmungen wieder zum Laufen zu bringen.

Er zeigt, dass ein durchtrennter Abschnitt des Rückenmarks reaktiviert werden kann, wenn dessen inhärente Intelligenz und Regenerationsfähigkeit «aufgeweckt» werden. Die vor fünf Jahren an der Universität Zürich begonnene Studie dürfte unser Verständnis des Zentralnervensystems tief greifend verändern. Das beobachtete Nervenwachstum lässt auf neue Methoden für die Behandlung von Lähmungen hoffen.

Die Studie von Grégoire Courtine, ehemaliger UZH-Neurologe und jetziger Professor für Rückenmarkwiederherstellung an der ETH Lausanne, belegt: Nach einigen Wochen Neurorehabilitation mit einer Kombination aus robotergesteuertem Laufgeschirr und elektrochemischer Stimulierung beginnen Ratten nicht nur aus eigenem Antrieb zu laufen, sondern können bei entsprechender Stimulierung schon bald rennen, Stufen hochklettern und Hindernissen ausweichen. Laut Courtine ist aber noch nicht klar, ob ähnliche Rehabilitationstechniken auch beim Menschen funktionieren würden.

Rückenmark aufwecken

Bekannt ist, dass Gehirn und Rückenmark sich nach kleineren Verletzungen anpassen und erholen können. Dieses Phänomen wird als Neuroplastizität bezeichnet. Nach schweren Verletzungen zeigte das Rückenmark jedoch bisher so wenig Plastizität, dass eine Regeneration unmöglich war. Die Arbeit von Grégoire Courtine dokumentiert nun, dass auch in solchen Fällen Plastizität und Erholung möglich sind, aber nur, wenn das «eingeschlafene» Rückenmark zuerst aufgeweckt wird.

Dazu spritzten er und sein Team Ratten eine chemische Lösung mit Monoamin-Agonisten. Diese Stoffe lösen eine Zellreaktion aus, indem sie an bestimmte Dopamin-, Adrenalin- und Serotoninrezeptoren der Rückenmarkneuronen andocken. Dieser Cocktail ersetzt die bei gesunden Menschen von den Hirnstammbahnen freigesetzten Neurotransmitter, regt die Neuronen an und bereitet sie darauf vor, zum richtigen Zeitpunkt Bewegungen des Unterkörpers zu koordinieren.

Fünf bis zehn Minuten nach der Injektion stimulierten die Wissenschaftler das Rückenmark elektrisch mithilfe von Elektroden, die in die äusserste Schicht des Rückenmarkkanals, den sogenannten Epiduralraum, implantiert worden waren. Diese beiden Stimulierungen – chemisch und elektrisch – sind erforderlich, um eine Gehbewegung auszulösen. «Die lokale Epiduralstimulierung sendet fortwährend elektrische Signale durch Nervenfasern an die chemisch angeregten Neuronen, die die Beinbewegungen steuern. Dann musste nur noch die Bewegung ausgelöst werden», erklärt Rubia van den Brand, Mitautorin der Studie.

Angeborene Intelligenz des Rückenmarks

Bereits 2009 berichtete Courtine, damals noch an der Universität Zürich, über die Wiederherstellung von – wenn auch nicht willensgesteuerten – Bewegungen. Er entdeckte, dass sich ein ab der Läsion vom Hirn abgetrenntes, stimuliertes Rückenmark einer Ratte überraschend entwickelte: Es übernahm nach und nach die Modulierung der Beinbewegungen, sodass vorher gelähmte Tiere auf einem Laufrad gehen konnten. Diese Experimente zeigten, dass das Laufrad eine sensorische Rückmeldung bewirkte, die eine Gehbewegung auslöste. Die angeborene Intelligenz des Rückenmarks übernahm diese Funktion, sodass das Gehen im Wesentlichen ohne Beitrag des Gehirns der Ratte erfolgte. Die Wissenschaftler waren überrascht und vermuteten, dass bereits ein sehr schwaches Hirnsignal ausreichen würde, damit die Tiere wieder willensgesteuerte Bewegungen vollführen können.

Um diese Theorie zu überprüfen, ersetzte Courtine das Laufrad durch einen Roboter, der die Ratten stützte und nur eingriff, wenn sie das Gleichgewicht verloren. Dadurch wurde den Nagern suggeriert, ihr Rückenmark sei gesund und funktionstüchtig. Sie wurden so ermutigt, willensgesteuert ans andere Ende der Plattform zu laufen, wo ein Stück Schokolade zur Belohnung auf sie wartete. «Dieses aus ihrer Sicht willensgesteuerte Training führte zu einer Vervierfachung der Nervenzellen im Gehirn und im Rückenmark. Dieses Nachwachsen beweist das riesige Neuroplastizitätspotenzial selbst nach schweren Verletzungen des Zentralnervensystems», sagt Janine Heutschi, Mitautorin der Studie.

Erste Rehabilitation beim Menschen am Horizont

Courtine bezeichnet dieses Nachwachsen als «neue Ontogenese», eine Art Wiederholung der Wachstumsphase eines Säuglings. Die Forscher stellten fest, dass die neu gebildeten Fasern die ursprüngliche Rückenmarksverletzung überbrückten und Signale aus dem Gehirn an das elektrochemisch angeregte Rückenmark weiterleiteten. Das Signal war stark genug, um eine Bewegung auf dem Boden ohne Laufrad auszulösen. Die Ratten begannen also, willensgesteuert in Richtung der Belohnung zu laufen, und trugen ihr gesamtes Gewicht ausschliesslich mit ihren Hinterbeinen.

Die spektakuläre Reaktion des Rattenrückenmarks auf die Behandlung legt theoretisch nahe, dass Menschen mit Rückenmarksverletzungen bald über neue Möglichkeiten verfügen werden. Courtine ist zuversichtlich, dass in ein bis zwei Jahren am Zentrum für Rückenmarksverletzungen an der Universitätsklinik Balgrist in Zürich Phase-II-Tests am Menschen beginnen können.

Literatur:
Rubia van den Brand, Janine Heutschi, Quentin Barraud, Jack DiGiovanna, Kay Bartholdi, Michèle Hürlimann, Lucia Friedli, Isabel Vollenweider, Eduardo Martin Moraud, Simone Duis, Nadia Dominici, Silvestro Micera, Pavel Musienko and Grégoire Courtine. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science. 31 May, 2012. doi: 10.1126/science.1217416

Für den Erhalt eines Exemplars der Arbeit senden Sie bitte eine Anfrage an scipak@aaas.org.

Multimedia:
Youtube-Video: http://youtu.be/ejwEqpV8ak4
Ressourcen (Videos und Bilder in hoher Auflösung): http://bit.ly/courtineEPFL
Video in Sendequalität: ftp://video-sav.epfl.ch/
Benutzername: sav
Passwort: savvas!1
In HTDOCS befindet sich der Ordner «Courtine». Bitte benutzen Sie einen FTP-Client für den Zugriff (Cyberduck oder Filezilla).
Kontakt:
Grégoire Courtine
Lehrstuhl der International Paraplegic Foundation (IRP) für Rückenmarkwiederherstellung
Tel. +41 21 693 8343
E-Mail: gregoire.courtine@epfl.ch
http://courtine-lab.epfl.ch

Nathalie Huber | idw
Weitere Informationen:
http://courtine-lab.epfl.ch
http://www.epfl.ch

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz

Kieler Wissenschaft entwickelt exzellentes Forschungsdatenmanagement

21.08.2017 | Informationstechnologie