Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

La-Ola-Wellen im Gehirn - Neuartiger Informationscode aufgedeckt

23.11.2011
Jülicher und Berliner Forscher haben herausgefunden, dass schleifenförmige Nervenzellverbände eine enorme Vielfalt von verschiedenen Mustern - und somit Informationscodes - bilden können.

Dabei stützt sich das Wissenschaftlerteam um Dr. Oleksandr Popovych auf mathematische Modelle. Sie sollen helfen, gesunde Aktivitätsmuster im lebenden Gehirn zu erkennen und neue Therapiewege für Parkinson oder Tinnitus zu erschließen. Die Ergebnisse erscheinen in der aktuellen Ausgabe der Zeitschrift Physical Review Letters.

Dr. Oleksandr Popovych vom Institut für Neurowissenschaften und Medizin des Forschungszentrums Jülich hat gemeinsam mit seinem Jülicher Kollegen Prof. Peter Tass und Dr. Serhiy Yanchuk vom Institut für Mathematik der Humboldt-Universität Berlin ein Computermodell entwickelt, das die Signalstärke und die Signalzeit innerhalb von Nervenzell-Schleifen variiert. Sie kamen so zu überraschenden Ergebnissen - beispielsweise, dass eine Erregungswelle trotz zuvor festgelegter Kreisrichtung rückwärts laufen kann.

Vereinfacht dargestellt ist eine Schleife aus Nervenzellen ein Kreis mit zum Beispiel zehn Teilnehmern. Teilnehmer eins gibt eine Information an Teilnehmer zwei weiter, Nummer zwei an Nummer drei und so weiter. Schließlich wandert die Information von Teilnehmer zehn wieder an Nummer eins. Ob die Information korrekt und schnell herumgereicht wird, hängt von den einzelnen Teilnehmern ab. Solche Schleifen sind grundlegende Strukturen im Gehirn - beispielsweise im motorischen System, bei dem mehrere Hirnareale in Schleifen eingebettet sind. Man geht davon aus, dass zum Beispiel die für die Bewegungskoordination notwendigen Informationen in derartigen Schleifen verarbeitet werden.

Gleichzeitig kann ein solcher Kreis Muster bilden - ähnlich einer La-Ola-Welle. Fassen sich alle Teilnehmer des Kreises an der Hand und reißen gleichzeitig die Arme in die Höhe, entsteht von außen betrachtet ein anderes Muster, als bei einer Aktion, bei welcher alle Teilnehmer nacheinander die Arme in einer Welle schwingen lassen. Je nach Rhythmus, Takt und Schwinghöhe können so ganz unterschiedliche Wellenmuster entstehen.

"Wir haben hierzu explizite mathematische Formeln entwickelt, die erklären, wie die Neuronen ihre Kopplungen, beziehungsweise Zeitverzögerungen verändern müssen, damit ganz konkrete Muster entstehen", erklärt Prof. Tass. Sein Fazit: "Schon ein elementarer und vergleichsweise einfacher Baustein im Nervensystem, nämlich eine gekoppelte und einfach gerichtete Schleife von Nervenzellen, kann eine unglaubliche Vielfalt von stabilen und dynamischen Mustern erzeugen, sie speichern und für Codierungszwecke verwenden."

Nervenzellen kommunizieren untereinander nicht durch direkten Kontakt, sondern durch das Ausschütten von biochemischen Botenstoffen - sogenannten Neurotransmittern. Wird an einer Kontaktstelle zwischen zwei Nervenzellen in kurzer Zeit viel Botenstoff ausgeschüttet, reagiert die nachfolgende Zelle mit einem starken elektrischen Impuls. Wenig Transmitter mit einer langsamen Übertragungsrate hat ein geringeres elektrisches Signal zur Folge. In einer Schleife ergibt sich folglich an jeder Verbindungsstelle die Möglichkeit, das Signal zu modulieren. So entsteht ein typisches zeitliches und räumliches Entladungsmuster der Gesamtschleife, also ein Code zum Beispiel für die Ausführung einer konkreten Bewegung.

"Für uns ist es wichtig, zu verstehen, wie vielfältig Informationsmuster im gesunden Gehirn abgebildet sind, um im Umkehrschluss therapeutische Ansätze für eine gestörte Kommunikation im Gehirn zu finden", betont Dr. Popovych. "Denn die krankhafte Synchronisation von Nervenzellverbänden findet sich beispielsweise bei Parkinson oder Tinnitus."

Bei diesen beiden Volksleiden soll das neue Modell in Zukunft u.a. eingesetzt werden zur Optimierung von therapeutischen Stimulationstechniken wie der "Coordinated Reset Neuromodulation". Diese Technik stört gezielt den ungewollten Gleichtakt der Nervenzellen, beispielsweise durch akustische oder elektrische Therapiesignale. So verlernt das Gehirn die krankhaften Synchronisationsvorgänge und wird in ein "gesundes Chaos" zurückgeführt. "Wir möchten mit dieser Therapie die gesunden Muster von Hirnaktivitäten und synaptischen Vernetzungen wiederherstellen und die physiologischen Vorgänge im Verlauf der Behandlung möglichst wenig stören", sagt Prof. Tass. "Hierfür sollten wir wissen, welche Palette an gesunden Mustern wir zu berücksichtigen haben", betont er. "Das neue mathematische Modell ist deshalb auch für unsere klinische Forschung ein wichtiger Meilenstein. Es kann uns helfen, therapeutische Ansätze wirksam und schonender für die Patienten zu gestalten", freut sich Dr. Popovych.

Weitere Informationen:

Forschungszentrum Jülich
www.fz-juelich.de
Institut für Neurowissenschaften und Medizin http://www.fz-juelich.de/inm/inm-7/DE/Home/home_node.html
Physical Review Letters
Vol. 107, Ausg. 22, 25.11.2011: "Delay- and coupling-induced firing patterns in oscillatory neural loops"

DOI: 10.1103/PhysRevLett.107.228102

online: http://link.aps.org/doi/10.1103/PhysRevLett.107.228102

Ansprechpartner:
PD Dr. Oleksandr Popovych
Institut für Neurowissenschaften und Medizin Neuromodulation (INM-7)
Tel.: 02461 61-6582
E-Mail: o.popovych@fz-juelich.de
Prof. Dr. Peter A. Tass
Institut für Neurowissenschaften und Medizin Neuromodulation (INM-7)
Tel.: 02461 61-8785
E-Mail: p.tass@fz-juelich.de
Pressekontakt:
Erhard Zeiss, Dr. Barbara Schunk
Tel. 02461 61-1841/-8031
E-Mail: e.zeiss@fz-juelich.de, b.schunk@fz-juelich.de
Das Forschungszentrum Jülich...
... betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen. Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 700 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Erhard Zeiss | Forschungszentrum Juelich GmbH
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

nachricht Spezialisten-Zellen helfen Gedächtnis auf die Sprünge
17.03.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie