Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebsforschung am Modell - Leipziger Wissenschaftler erhalten Förderung

14.05.2009
Für ein wissenschaftliches Projekt, das Prozesse klären soll, die zu Leukämien, Lymphomen und anderen Erkrankungen der Blutbildung führen, erhalten Wissenschaftler der Universität Leipzig vom Bundesministerium für Bildung und Forschung (BMBF) Fördermittel in Höhe von 1,6 Millionen Euro. Dazu sollen zunächst mathematische Modelle erarbeitet und am Computer zu simuliert werden. Darauf aufbauend sollen bessere Behandlungsstrategien entwickelt werden, die im Rahmen von klinischen Studien überprüft werden können.

Bösartige Tumoren des Blutbildungssystems wie Lymphome oder Leukämien sind häufige, für den Patienten schwerwiegende Erkrankungen. "Zwar gibt es Therapiemöglichkeiten, diese haben jedoch zum Teil starke Nebenwirkungen oder sind, wie etwa bei Knochenmarkstransplantationen, mit hohen Risiken behaftet", so Prof. Dr. Markus Löffler, Leiter des Instituts für Medizinische Informatik, Statistik und Epidemiologie (IMISE) und leitender Projektkoordinator.

Ziel des Forschungsvorhabens wird es sein, die bestehenden Behandlungsstrategien zu optimieren bzw. neue Therapien zu entwickeln. Der Weg dorthin führt über mathematische Modelle, mittels derer biologische Prozesse am Computer simuliert und therapeutische Wirkungen vorhergesagt werden können. Die so gewonnen Daten sollen anschließend klinisch getestet und medizinisch nutzbar gemacht werden.

Das Leipziger IMISE leitet das umfangreiche Projekt, welches bundesweit angelegt ist und zahlreiche Partner und verschiedene Teilprojekte zusammenführt. Auf drei Bereiche wird sich die Arbeit der Wissenschaftler konzentrieren:

Entwicklung von drei Modellen zur Darstellung von Blutbildung und Blutkrebs

Die Entwicklung eines umfassenden Modells der Blutbildung soll es möglich machen, die Blutbildung und die auf sie wirkenden Störungen z.B. bei Krebserkrankungen und deren Therapien umfassend zu beschreiben. "Solche, bislang nicht existierenden Modelle sind notwendig, um Vorhersagen über die Dynamik der Blutbildung abzuleiten. Damit werden wir in der Lage sein, Behandlungsstrategien für verschiedene krankhafte Zustände wie Tumoren oder Schädigungen nach Chemotherapien zu entwickeln beziehungsweise zu optimieren", erklärt Prof. Markus Löffler die Grundzüge des Teilprojektes.

Aufbauend auf diesem Blutbildungsmodells soll ein dynamisches Modell der chronischen myeloischen Leukämie (CML) entwickelt werden. Das ist eine häufige auftretende Form des Blutkrebses, die mit einer starken Vermehrung der weißen Blutkörperchen einhergeht. "Uns interessieren die Mechanismen, die bei der Entstehung dieser, ohne Behandlung tödlich verlaufenden, Leukämie-Variante greifen, um darauf aufbauend die therapeutischen Effekte der gegenwärtig genutzten Medikamente wie Imatinib, Dastinib oder Nilotinib am Modell zu simulieren. So hoffen wir, optimierte Behandlungsstrategien vorhersagen und die Planung klinischer Studien substanziell unterstützen zu können", formuliert Dr. Ingo Röder, einer der Projektleiter und Mathematiker am IMISE, die Ziele der Projektgruppe.

Ein dritter Bereich konzentriert sich auf die Modellierung von B-Zell Non-Hodgkin-Lymphomen. Auch dieser Tumor, der auf eine Entartung der im Knochenmark gebildeten weißen Blutkörperchen zurückgeht, wird in einem Modell dargestellt, das Wachstum und Reaktion auf verschiedene Therapien (z.B. die Gabe des Antikörpers Rituximab) simuliert. Das Modell soll Rückfallraten nach Chemotherapien in Abhängigkeit von der Therapie und individuellen Faktoren quantitativ richtig beschreiben und Vorhersagen zur Wirksamkeit von neuen Therapieschemata ermöglichen. Ein weiteres Modell untersucht Faktoren, die zur Entstehung von malignen Tumorzellen aus normalen B-Zellen führen und welchen Verlauf die genetische Vielfalt der Tumorzellen mit und ohne Therapie nimmt. Außerdem wird in diesem Projektbereich versucht, die Effekte tumorspezifischer Veränderungen im Regulationsnetzwerk der Zellen besser zu verstehen.

Ziel: Behandlung von Blutkrebs soll verbessert werden

"Wir erwarten, dass die Ergebnisse des Projektes einen großen Einfluss auf das Verständnis der normalen und pathologischen Gewebsorganisation am Beispiel der Blutbildung haben werden und wir den Weg für bedeutende Verbesserungen in der Behandlung von Tumorerkrankungen bei der Blutbildung bereiten", fasst Prof. Löffler zusammen.

Das Projekt "Haematosys - Systembiologie der Hämatopoese und hämatopoetischer Neoplasien" ist ein bundesweites Verbundprojekt, das Partner aus führenden klinischen hämatoonkologischen Studiengruppen, Pathologen, Genetiker, Zellbiologen sowie Mathematiker, Statistiker und Bioinformatiker vereint. Das IMISE der Universität Leipzig koordiniert unter der Leitung von Prof. Dr. Markus Löffler und in Zusammenarbeit mit dem Interdisziplinären Zentrum für Bioinformatik (IZBI) die verschiedenen Arbeitsgruppen und ist wesentlich an der Planung und Vorbereitung der einzelnen Studienprojekte beteiligt.

Prof. Dr. Markus Löffler
E-Mail: markus.loeffler@imise.uni-leipzig.de
Tel.: +49 341 97 16100
Fax: +49 341 97 16109

Dr. Bärbel Adams | Universität Leipzig
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics