Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebs: Kein Tumor ohne Kooperation

15.06.2010
Tumoren verschwinden, wenn man die für ihre Entstehung verantwortlichen Gene hemmt. Warum sie sich so verhalten, darüber existierten bisher nur Theorien. Einen konkreten Nachweis liefern jetzt Forscher der Universität Würzburg. Sie bestätigen damit einen lange gehegten Verdacht.

Krebs-Gene bilden den Bauplan für Proteine, die Zellen dazu veranlassen, sich ungebremst zu vermehren. Allerdings müssen diese Proteine in der Regel mit weiteren Partnern zusammenarbeiten, damit das Tumorwachstum einsetzt. Wird die Zusammenarbeit gestört, stellt der Tumor sein Wachstum ein.

Über die Gründe dafür, gibt es schon seit vielen Jahren eine Theorie und Befunde aus dem Reagenzglas. Nun ist es Wissenschaftlern der Universitäten Würzburg und Stanford erstmals am lebenden Organismus gelungen, diese Theorie zu bestätigen. Über ihre Arbeit berichtet die Fachzeitschrift Genes & Development in ihrer aktuellen Ausgabe.

Die Rolle der Krebs-Gene

Jeder Mensch trägt in beinahe jeder Zelle seines Körpers eine bestimmte Gruppe von Genen, die eine wichtige Rolle bei der Krebsentstehung spielen– die so genannten Myc-Gene. Normalerweise werden diese Gene nur sehr wenig abgelesen; sie dienen als Bauplan für Myc-Proteine, die Aufgaben beim Zellwachstum übernehmen und nur in geringen Mengen gebraucht werden.

Arbeiten die Myc-Gene nicht so wie sie sollen, teilen sich Zellen unkontrolliert, ein Tumor entsteht. Diesen Ablauf hat das Wissenschaftler-Team genauer in Augenschein genommen. „Schon seit 1997 gibt es die Theorie, dass Myc-Proteine sich mit einem weiteren Protein – dem Miz1-Protein – verbinden und damit andere Gene regulieren, die für das Tumorwachstum von Bedeutung sind“, erklärt Martin Eilers.

Eilers ist Inhaber des Lehrstuhls für Physiologische Chemie II am Biozentrum der Universität Würzburg. Bereits 1988, in seiner Zeit als Postdoc in San Francisco, hat er damit begonnen, die Myc-Gene und -Proteine zu erforschen. 1997 gehörte er zu dem Wissenschaftler-Team, das die Theorie der Protein-Zusammenarbeit entwickelte.

Jetzt ist es zwei Doktoranden in seiner Gruppe, Judith Müller und Tobias Otto, gelungen, gemeinsam mit Kollegen der Stanford University (Kalifornien) diese Theorie am lebenden Organismus zu bestätigen.

Eine Genmutation sorgt für weniger Krebserkrankungen

„Tumorzellen sind auf ständige Unterstützung durch die für sie verantwortlichen Gene angewiesen“, sagt Eilers. Fehlt diese Unterstützung, bricht die Tumorzelle zusammen. „Die Gründe dafür hat man bisher nie genau verstanden“, so der Wissenschaftler. Eine Erklärung liefert die Myc-Miz-Kollaboration.

„Tumorzellen tragen in sich ein Programm, das sie eigentlich daran hindert, sich ungebremst zu vermehren“, erklärt Martin Eilers. Oder, etwas anders formuliert: Die Tumorzelle neigt zum Selbstmord beziehungsweise zur Arbeitsverweigerung. So kann sie zum einen den programmierten Zelltod starten – eine geschädigte Zelle bringt sich um und bewahrt damit den gesamten Organismus vor größerem Schaden. Wissenschaftler sprechen in diesem Fall von Apoptose. Oder die Zelle stoppt ihren Lebenszyklus, teilt sich nicht mehr, bleibt aber weiterhin stoffwechselaktiv. Der Fachausdruck dafür lautet Seneszenz.

Erst die Wechselwirkung mit dem Miz1-Protein verhindert die Seneszenz. Der Nachweis dafür gelang den Wissenschaftlern, als sie das Myc-Gen an einer Stelle umbauten. Das dementsprechend veränderte Protein war deshalb kaum noch in der Lage, an Miz1 zu binden. Gleichzeitig traten bei den Versuchstieren, die das mutierte Gen trugen, deutlich weniger Krebsfälle auf. Eigentlich ein kurioses Ergebnis: Ein mutiertes Gen senkt die Zahl der Tumoren. Denn normalerweise sind gerade Genmutationen für eine Vielzahl von Krebsfällen verantwortlich.

Proteine müssen zusammenarbeiten

Warum es in diesem Fall nicht so ist? „Myc muss an Miz1 binden. Nur dann kann es verhindern, dass die Zelle bestimmte Faktoren bildet, die das Tumorwachstum verhindern“, erklärt Martin Eilers. Erst wenn Myc und Miz zusammenarbeiten, sind sie in der Lage, die Zelle zum ständigen Wachstum zu treiben. Nur gemeinsam können sie die Zelle daran hindern, ihr normales Alterungsprogramm abzuspulen.

Direkte Konsequenzen für eine Krebstherapie hat die Erkenntnis der Wissenschaftler aus Würzburg und Stanford nicht. Als möglicher Angriffspunkt eigne sich der Myc-Miz-Verbund derzeit noch nicht – dazu sei das Geschehen zu komplex. „Wir wissen noch zu wenig über seine physiologische Bedeutung so Eilers. Deshalb will Eilers mit seinem Team in einem nächsten Schritt versuchen, die Rolle der Wechselwirkung beider Proteine in der normalen Entwicklung aufzuklären.

The interaction between Myc and Miz1 is required to antagonize TGFb-dependent autocrine signaling during lymphoma formation and maintenance. Jan van Riggelen,Judith Müller,Tobias Otto, Vincent Beuger, Alper Yetil,Peter S. Choi, Christian Kosan, Tarik Möröy, Dean W. Felsher and Martin Eilers. Genes & Development

Kontakt: Prof. Dr. Martin Eilers, T (0931) 31-84442, martin.eilers@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics