Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn die Kommunikation zwischen den Zellen unterlaufen wird

08.09.2009
Alternativer Weg der Zell-Zell-Kommunikation kann mit Herzmuskelschwäche in Zusammenhang stehen

Wie schafft es eine Zelle, so unterschiedliche Funktionen wie Sinneswahrnehmung, Verdauung oder Herzschlag zu regulieren?

Der Antwort auf diese spannende Frage sind Wissenschaftler der beiden Medizinischen Fakultäten der Universität Heidelberg - der Medizinischen Fakultät Mannheim und der Medizinischen Fakultät Heidelberg - ein Stück näher gekommen.

In einem durch die Deutsche Forschungsgemeinschaft (DFG) und das Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekt unter der Leitung von Professor Dr. Thomas Wieland, Direktor des Instituts für Experimentelle und Klinische Pharmakologie und Toxikologie der Universitätsmedizin Mannheim und Privatdozent Dr. Wolfgang Rottbauer, Stellvertretender Ärztlicher Direktor der Abteilung Kardiologie, Angiologie und Pulmologie des Universitätsklinikums Heidelberg, untersuchen sie die Mechanismen der Zell-Zell-Kommunikation. Ihre Forschungsergebnisse, die aktuell in den Proceedings of the National Academy of Sciences USA (PNAS) publiziert sind, sind von Bedeutung für die künftige Behandlung beispielsweise der Herzmuskelschwäche.

Zellen kommunizieren untereinander mit Hilfe von Signalstoffen, die an Rezeptor-Proteine in ihrer Zellwand binden. Die meisten Rezeptoren geben das Signal ins Zellinnere über die Aktivierung so genannter G-Proteine weiter. Die G-Proteine wiederum aktivieren Enzyme, die einen zentralen zweiten Botenstoff, den so genannten "second messenger", bilden. Einer der wichtigsten durch G-Proteine regulierte "second messenger" ist das cAMP (cyklisches Adenosinmonophosphat). Ein Mitglied aus der Familie der G-Proteine, das Gs-Protein, aktiviert das Enzym Adenylylcyclase, das diesen zentralen Botenstoff herstellt. Eine Zunahme an cAMP hat eine Vielzahl von Reaktionen im Zellstoffwechsel zur Folge. Im Herzen reguliert cAMP unter anderem die Geschwindigkeit und Kraft des Herzschlages.

Bereits im Jahr 2003 machten die Arbeitsgruppen von Professor Wieland sowie von Dr. Hans-Jörg Hippe und Professor Dr. Feraydoon Niroomand, Abteilung Kardiologie, Angiologie und Pulmologie des Universitätsklinikums Heidelberg, unter der Leitung von Professor Dr. Hugo Katus, eine entscheidende Entdeckung. Sie konnten biochemisch und zellbiologisch nachweisen, dass das cAMP, wichtiger Kontrollpunkt in unseren Körperzellen, nicht nur von außen, über Rezeptoren in der Zellwand, aktiviert werden kann. Das cAMP kann auch innerhalb der Zelle, über das Enzym Nukleosid Diphosphat Kinase (NDPK), gesteuert werden. Da es Hinweise dafür gab, dass dieser Mechanismus für Erkrankungen wie die Herzmuskelschwäche eine Rolle spielen könnte, untersuchten die Forscher, inwieweit die Herzfunktion durch diesen Mechanismus beeinflusst werden kann. Im Jahr 2007 konnten die Wissenschaftler belegen, dass die Regulation des cAMP-Gehalts über die NDPK in isolierten Herzzellen tatsächlich die Kontraktion der Zelle steuern kann (Hippe H.-J. et al., Circulation Research 2007; 100: 1191).

In einem weiteren Schritt untersuchten die Wissenschaftler die Bedeutung dieses neuen Signalwegs für lebende Wirbel- bzw. Säugetiere. Dazu arbeiteten sie mit der Arbeitsgruppe von Privatdozent Dr. Rottbauer zusammen. In der jetzt erschienenen Publikation im renommierten Journal PNAS zeigen sie, dass NDPK nicht nur die Aktivität, sondern auch den Gehalt der Zellen an G-Proteinen sowie deren Wechselwirkung mit den so genannten Caveolinen, Gerüstproteinen in der Zellmembran, reguliert. Das Fehlen des Enzyms NDPK, beispielsweise in Zebrafischen, hat daher eine drastische Abnahme der Herzfunktion zur Folge.

Die Wechselwirkung der NDPK mit G-Proteinen scheint also von grundlegender Bedeutung für eine intakte Zell-Zell-Kommunikation zu sein. Da in früheren Untersuchungen eine dreifach erhöhte Menge an NDPK in Herzzellen von Patienten mit schwerer Herzinsuffizienz gegenüber Herzgesunden festgestellt wurde, könnten die aktuellen Befunde Ausgangspunkt für neue Therapieansätze zur Behandlung von Herzmuskelschwäche und anderen Erkrankungen mit veränderter Zell-Zell-Kommunikation über G-Proteine sein.

Aktuelle Publikation
"The interaction of nucleoside diphosphate kinase B with Gbetagamma dimers controls heterotrimeric G protein function."

Hippe H.-J., Wolf N.M., Abu-Taha I., Mehringer, R., Just S., Lutz S., Postel E., Niroomand F., Katus H.A., Rottbauer W., Wieland T.

Proc Natl Acad Sci published online before print September 4, 2009, doi: 10.1073/pnas.0901679106

Ansprechpartner:

Prof. Dr. Thomas Wieland,
Direktor des Institutes für Experimentelle und Klinische Pharmakologie und Toxikologie,
Medizinische Fakultät Mannheim,
E-Mail: thomas.wieland@medma.uni-heidelberg.de
PD Dr. Wolfgang Rottbauer,
Leitender Oberarzt, Medizinische Klinik III,
Universitätsklinikum Heidelberg,
E-Mail: wolfgang.rottbauer@med.uni-heidelberg.de
Dr. Hans-Jörg Hippe,
Assistenzarzt, Medizinische Klinik III,
Universitätsklinikum Heidelberg,
E-Mail: hans-joerg.hippe@med.uni-heidelberg.de

Dr. Eva Maria Wellnitz | idw
Weitere Informationen:
http://www.pnas.org/content/early/2009/09/03/0901679106.full.pdf+html

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie