Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie kommen Folate ins Gehirn? Transport entschlüsselt.

21.11.2013
Wissenschaftler klären Mechanismus, wie Folate ins Gehirn transportiert werden. Veröffentlicht in „NATURE COMMUNICATIONS“.

Ohne Folate (Vitamin B9) läuft bei der Entwicklung des Gehirns von Kindern eini-ges schief. Eine mangelhafte Versorgung mit dem lebenswichtigen Nahrungsbestandteil in den frühen Jahren der Kindesentwicklung hat Folgen: Betroffene Kinder sind oft bereits im dritten Lebensjahr deutlich in ihrer Entwicklung zurück. Sie haben schwerwiegende Bewegungsstörungen und häufig epileptische Krampfanfälle. Eine mögliche Diagnose lautet „cerebrale Folattransportdefizienz“.

Seit kurzem erst lässt sich diese seltene Erbkrankheit erkennen, die durch Mutationen im FOLR1-Gen verursacht wird und zu einer Störung des Folattransports über die Blut-Liquor-Schranke führt. Daraus ergibt sich ein Folatmangel im Gehirn und es kommt zu einer Hirnschrumpfung und zu einer Störung der weißen Hirnsubstanz. Unbehandelt führt die Erkrankung zu einem fortschreitenden Verlust von geistigen und motorischen Fähigkeiten.

Ein interdisziplinäres Forscherteam unter der Leitung von Prof. Dr. Dr. Robert Steinfeld, Abteilung Neuropädiatrie in der Klinik für Kinder- und Jugendmedizin der Universitätsmedizin Göttingen (UMG), hat jetzt einen Ansatz für eine künftige Behandlung gefunden. Erstmals konnten die Forscher klären, über welchen Mechanismus die lebenswichtigen Folate bei gesunden Menschen ins Gehirn transportiert werden.

Beteiligt waren Wissenschaftler der Göttinger Max-Planck-Institute für Experimentelle Medizin und Biophysikalische Chemie, des Zentrums für Molekulare Neurobiologie Hamburg, des Insti-tuts für Biochemie der Universität Münster sowie des Instituts für Chemie der Purdue University in den USA. Die Ergebnisse der Forschungen sind veröffentlicht in der Juli-Ausgabe der Zeitschrift „NATURE COMMUNICATIONS“.

Originalpublikation: Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. In: Nature Communincations 2013 Jul 5;4:2123. doi: 10.1038/ncomms3123.

Autoren: Marcel Grapp*, Arne Wrede, Michaela Schweizer, Sabine Hüwel, Hans-Joachim Galla, Nicolas Snaidero, Mikael Simons, Johanna Bückers, Philip S. Low, Henning Urlaub, Jutta Gärtner*, Robert Steinfeld*

(*Mitarbeiter der Klinik für Kinder- und Jugendmedizin, Universitätsmedizin Göttingen)

„Als wir mit dem Projekt begonnen haben, war die gängige Vorstellung vom Folattransport ins Gehirn eine völlig andere. Aber unsere experimentellen Daten passten einfach nicht zu diesem Modell. Nur durch aufwendige mikroskopische Techniken und durch Zusammenarbeit mit anderen Wissenschaftlern konnten wir das Problem lösen“, sagt Prof. Steinfeld, Senior-Autor der Publikation aus der Abteilung Neuropädiatrie in der Klinik für Kinder- und Jugendmedizin der UMG. Die Ergebnisse der Forschungen: Folate werden mittels des Folatrezeptors alpha vom Blut durch die Plexus choroideus-Zellen in den Liquor transportiert. Folatrezeptor alpha wird dabei gebunden an kleine Vesikel in den Liquor (Nervenwasser) abgegeben. Diese Vesikel (Exosomen) dienen als Transportvehikel für Folate in das Gehirngewebe.

„Die Entschlüsselung dieses ungewöhnlichen Transportwegs hat Konsequenzen für die Behandlung aller Erkrankungen, die mit einem Mangel an Folaten im Gehirn einhergehen“, sagt Prof. Steinfeld. Die Erkenntnisse bieten die Grundlage für die Entwicklung geeigneter Behandlungsformen für alle Erkrankungen, die mit einem Folatmangel im Gehirn einhergehen. Die Forscher vermuten, dass auch andere lebenswichtige Nährstoffe und biologische Substanzen auf diese Art ins Gehirn transportiert werden. Der Transportweg könnte ein grundlegender Mechanismus für den zellulären Austausch von biologischen Substanzen sein.

Hintergrund: Die cerebrale Folattransportdefizienz ist erst seit 2009 bekannt. Entdeckt hat sie Prof. Dr. Dr. Robert Steinfeld. Er und ein Forscherteam der Abteilung Neuropä-diatrie an der Klinik für Kinder- und Jugendmedizin der UMG konnten damals erstmals einen Gendefekt als Ursache festmachen. Durch Mutationen ist das FOLR1-Gen defekt. Durch diesen Defekt wird der Folattransport über die Blut-Liquor-Schranke blockiert und es kommt zu einem Folatmangel im Gehirn. Um die Behandlungsmöglichkeiten dieser frühkindlichen neurogenerativen Erkrankung zu verbessern, untersuchte Prof. Steinfeld den genauen Mechanismus des Folattransports ins Gehirn.

Folate, von Folsäure abgeleitete natürliche Verbindungen, sind lebensnotwendige Nahrungsbestandteile und werden auch als Vitamin B9 bezeichnet. Folsäure-Verbindungen sorgen vor allem für eine gesunde Entwicklung des Nervensystems. Menschen müssen täglich ungefähr 0,5 Milligramm Folate aufnehmen. Die stecken in Salaten und grünem Blattgemüse. Besonders während der Schwangerschaft sowie im Säuglings- und Kleinkindesalter ist es wichtig, für eine ausreichende Versorgung mit Folaten zu sorgen.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Abteilung Neuropädiatrie, Klinik für Kinder- und Jugendmedizin
Prof. Dr. Dr. Robert Steinfeld
Telefon 0551 / 39-22570
rsteinfeld@med.uni-goettingen.de

Stefan Weller | idw
Weitere Informationen:
http://www.med.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

nachricht Tropenviren bald auch in Europa? Bayreuther Forscher untersuchen Folgen des Klimawandels
21.06.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie