Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kleine Moleküle mit großer Wirkung - Wie Krebszellen ihr Überleben sichern

10.12.2008
Mainzer Wissenschaftler identifizieren Mechanismus für Chemotherapie-Resistenz

Ein Team von Wissenschaftlern um Prof. Roland Stauber von der Mainzer Universitäts-HNO-Klinik hat einen molekularen Mechanismus identifiziert, mit dem sich Krebszellen gegen eine Behandlung durch Chemotherapeutika "wehren" und so versuchen, ihr Überleben sichern.

Dabei spielen sowohl der kleine Botenstoff Stickstoffmonoxid (NO) als auch das Eiweiß Survivin eine Rolle. Die Ergebnisse der bei Kopf-Halstumoren durchgeführten Studie sind kürzlich im "International Journal of Cancer" (Fetz et al., 2008) erschienen. ..

.. In einer weiteren Veröffentlichung im Sommer diesen Jahres in der Zeitschrift "Cancer Research" (Engels et al., 2008) hatten die Wissenschaftler bereits einen ähnlichen Mechanismus bei Eierstockkarzinomen entdeckt. Dies lässt vermuten, dass es sich bei der "NO/Survivin-Achse" um ein übergeordnetes Prinzip handelt, welches bei verschiedensten Krebsarten eine Rolle spielt.

Jährlich erkranken mindestens 10.000 Menschen an bösartigen Kopf-Halstumoren. Trotz guter Behandlungserfolge durch Operation, Bestrahlung und/oder Chemotherapie entwickelt ein Großteil dieser Patienten nach der Erstbehandlung ein Rezidiv, und oftmals treten Fernmetastasen auf. Die molekularen Ursachen für die Entstehung und Progression von Kopf-Hals-Karzinomen sowie deren Therapieansprechen sind immer noch unzureichend verstanden.

In der umfangreichen aktuellen Studie konnten die Wissenschaftler des Universitätsklinikums Mainz erstmalig die molekularen Grundlagen erarbeiten, auf welche Weise der kleine Botenstoff Stickstoffmonoxid (NO) zum Wachstum und zur Therapieresistenz von Kopf-Hals-Karzinomen beiträgt. NO spielt eine Rolle bei zahlreichen physiologischen, aber auch krankhaften Prozessen: So stellen beispielsweise die meisten Krebszellen vermehrt NO her und scheinen sich dadurch einen Überlebensvorteil zu sichern. Wie, war jedoch bislang unklar. Nun gelang es den Mainzer Forschern nachzuweisen, dass NO bzw. das NO-erzeugende Eiweiß - im Fachjargon iNOS - die Bildung eines weiteren Eiweiß, des so genannten Survivins induziert. Der Name Survivin ist von dem englischen Verb "to survive" - zu deutsch "überleben" - abgeleitet, was zugleich einen Hinweis auf seine Funktion gibt: So wurde Survivin von den Forschern erst kürzlich als einer der zentralen Faktoren identifiziert, welcher für Rezidiventstehung und Therapieresistenz bei Tumoren der Kopf-Hals-Region wichtig ist, indem er den programmierten Zelltod (Apoptose) der Krebszellen verhindert (Engels et al., 2007). In den Krebszellen werden durch die vermehrte Bildung von iNOS - und damit des Botenstoffs NO - bestimmte Signalwege aktiviert, die letztendlich zur vermehrten Herstellung von Survivin führen. Dessen Eigenschaften als Inhibitor des programmierten Zelltods wiederum werden von den Krebszellen genutzt, um sich gegen den Angriff von Chemotherapeutika oder Strahlentherapie zu schützen - die Krebszellen aktivieren über die Achse "iNOS/Survivin" sozusagen ein Überlebensprogramm.

"Dieses neuartige molekulare Verständnis der Abwehrmechanismen von Krebszellen erlaubt es uns nun, diese Abwehrmechanismen gezielt anzugreifen", berichtet Prof. Roland Stauber, Leiter der Abteilung Molekulare und Zelluläre Onkologie. Erste Erfolg versprechende Ergebnisse an Krebszellen in Kultur, die ebenfalls im Rahmen der aktuellen Studie durchgeführt wurden, zeigten bereits, dass durch den kombinierten Einsatz chemischer iNOS-Inhibitoren zusammen mit einer Blockade der Survivin-Produktion Tumorzellen effizient in den Zelltod getrieben werden können.

Doch die Forscher gehen noch einen Schritt weiter. "Dass es sich hierbei um einen Mechanismus handelt, der keinesfalls nur auf Kopf-Hals-Tumore beschränkt ist, haben wir bereits im Sommer diesen Jahres gezeigt als wir die Bedeutung der iNOS/Survivin-Achse bei Eierstockkrebs aufgedeckt haben", erläutert Prof. Stauber. "Diese Ergebnisse bestätigen unseren multidisziplinären Ansatz, in dem wir über die Grundlagenforschung Mechanismen identifizieren, die dann im engen Austausch mit verschiedenen medizinischen Disziplinen gleichzeitig in unterschiedlichen Tumorentitäten überprüft werden. So können wir auch indikationsübergreifende Mechanismen effektiv und schnell identifizieren. Dies nützt letztlich den Patienten, denn die Ergebnisse aus der Grundlagenforschung kommen schneller bei ihnen an."

Die Herausforderung für die Kliniker und Wissenschaftler besteht nun darin, die Effektivität und Sicherheit dieser Strategie in Tumormodellen zu überprüfen, um so eine mögliche klinische Anwendung besser einschätzen zu können. "Diese aufwendigen Untersuchungen können jedoch nur mit Unterstützung nationaler Förderorganisationen durchgeführt werden", so Prof. Stauber. "Wir hoffen daher, dass unsere indikationsübergreifende Forschung auch weiterhin Unterstützung findet."

Veröffentlichungen:
Engels, K., Knauer, S. K., Loibl, S., Fetz, V., Harter, P., Schweitzer, A., Fisseler-Eckhoff, A., Kommoss, F., Hanker, L., Nekljudova, V., Hermanns, I., Kleinert, H., Mann, W., du Bois, A., and Stauber, R. H. (2008). NO signaling confers cytoprotectivity through the survivin network in ovarian carcinomas. Cancer Res 68(13), 5159-66.
Engels, K., Knauer, S. K., Metzler, D., Simf, C., Struschka, O., Bier, C., Mann, W., Kovacs, A. F., and Stauber, R. H. (2007). Dynamic intracellular survivin in oral squamous cell carcinoma: underlying molecular mechanism and potential as an early prognostic marker. J Pathol 211(5), 532-40.

Fetz, V., Bier, C., Habtemichael, N., Schuon, R., Schweitzer, A., Kunkel, M., Engels, K., Kovacs, A. F., Schneider, S., Mann, W., Stauber, R. H., and Knauer, S. K. (2008). Survivin-mediated chemoresistance is modulated by iNOS in head and neck cancer cells. International Journal of Cancer DOI: 10.1002/ijc.24182.

Kontakt:
Univ.-Prof. Dr. Roland H. Stauber, Molekulare und Zelluläre Onkologie
Klinikum der Johannes Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131 Mainz
Tel.: (06131) 17 70 02 / 6030, Fax: (06131) 17 66 71
E-mail: rstauber@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.stauber-lab.de
http://www.uni-mainz.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Eine Teleskopschiene für Nanomaschinen
20.04.2018 | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

nachricht Künstlicher Leberfleck als Frühwarnsystem
19.04.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics