Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Kanalsystem der menschlichen Zelle

24.04.2009
Wissenschaftler am Universitätsklinikum Heidelberg stellen erstmals dreidimensional die Vermehrung des Dengue-Virus dar / Veröffentlichung in "Cell Host & Microbes"

Das Dengue-Fieber ist die häufigste von Stechmücken übertragene Infektionskrankheit; weltweit sind rund 100 Millionen Menschen erkrankt. Wissenschaftlern des Hygiene-Instituts am Universitätsklinikum Heidelberg ist es erstmals gelungen, den Vermehrungsort des Virus in der menschlichen Zelle dreidimensional darzustellen.


Titelbild der aktuellen Ausgabe von \"Cell Host & Microbes\". Grau im Hintergrund liegt eine normale, zweidimensionale Aufnahme des Virus mit dem Elektronenmikroskop. Überlagert ist das 3D-Modell. Man erkennt die Röhre des Endoplasmatischen Reticulums und im Inneren davon die ballonartigen Einstülpungen, in denen das Dengue-Virus sein Genom vermehrt. Quelle: Hygiene-Institut Heidelberg

Ihre Arbeit gibt Einblicke in den genauen Ablauf der Virusvermehrung und hat Modellcharakter für weitere Viren, deren Vermehrung noch ungeklärt ist, wie etwa das Hepatitis-C-Virus. Außerdem bietet sie neue Ansatzpunkte für die Entwicklung einer Vorbeugung oder Behandlung des Fiebers. Bislang gibt es weder eine Impfung noch eine spezifische antivirale Therapie.

Professor Dr. Ralf Bartenschlager, Direktor der Abteilung Molekulare Virologie am Heidelberger Hygiene-Institut, und sein Team haben in Kooperation mit Kollegen vom European Molecular Biology Laboratory (EMBL) ihre Arbeit in der aktuellen Ausgabe der renommierten Zeitschrift "Cell Host & Microbes" veröffentlicht.

Viren haben keinen eigenen Stoffwechsel, können allein aus ihrer Erbsubstanz (RNA oder DNA) keine Proteine herstellen. Ihre Vermehrung kann daher nur innerhalb einer Wirtszelle erfolgen - doch wo und wie genau geschieht dies? Für die Entwicklung von Therapien ist diese Frage von entscheidender Bedeutung.

Viren wandeln menschliche Zellmembranen für ihre Zwecke um

Dengue-Viren vermehren sich im sogenannten Endoplasmatischen Reticulum, einem mit der Zellkernhülle verbundenen Membransystem; dort findet die Synthese von Proteinen statt. Das Dengue-Virus nutzt dieses Membransystem und formt es für seine eigenen Zwecke um.

"Wir wissen nun, dass die virale RNA in Einstülpungen des Endoplasmatischen Reticulums vermehrt und durch winzige Poren ausgeschleust wird. Auch konnten wir zeigen, dass die Vermehrung des Virusgenoms und dessen Einkapselung in neue Viren direkt gekoppelt sind", so Professor Bartenschlager. Die neuen Virusgenome werden durch die Poren in den intrazellulären Raum ausgeschleust und dort in Virusvorstufen eingebaut, die dann ein zweites Mal in das Endoplasmatische Reticulum eindringen. Dabei erhalten sie eine Membranhülle, die sie für die Zelle so tarnen, dass sie wie eine normale zelluläre Fracht ausgeschleust werden. Der Fortpflanzungszyklus kann von Neuem beginnen.

Literatur:
Sonja Welsch, Sven Miller, Ines Romero-Brey, Andreas Merz, Christopher
Bleck, Paul Walther, Stephen D. Fuller, Claude Antony, Jacomine Krijnse-Locker, Ralf Bartenschlager, Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites, Cell Host & Microbes 2009, 5, 4.
Ansprechpartner:
Prof. Dr. Ralf Bartenschlager
Abteilung Molekulare Virologie
Medizinische Fakultät
Universitätsklinikum Heidelberg
Im Neuenheimer Feld 345
69120 Heidelberg
Tel.: 06221 / 56 45 69
E-Mail: Ralf_Bartenschlager@med.uni-heidelberg.de
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 7.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 40 Kliniken und Fachabteilungen mit 1.600 Betten werden jährlich rund 500.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.100 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. (Stand 12/2008)
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/
http://www.klinikum.uni-heidelberg.de/DENGUE.104918.0.html
http://www.klinikum.uni-heidelberg.de/Molecular-Virology.104862.0.html

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops