Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Immunzellen ihre Flexibilität verlieren, leidet die Abwehr

18.11.2008
Sauerstoffradikale schädigen T-Zellen / Forscher des Universitätsklinikums Heidelberg publizieren in "Immunity"

Forscher des Universitätsklinikums Heidelberg haben einen zentralen Mechanismus entdeckt, wie Immunzellen geschädigt werden und damit die körpereigene Abwehr geschwächt wird: Bestimmte Sauerstoffverbindungen, die im Körper z.B. bei Krebs, Entzündungen aber auch Alterungsprozessen verstärkt gebildet werden, verändern ein Protein, das die Flexibilität bestimmter Immunzellen steuert. Dadurch können die Zellen ihre vielfältigen Aufgaben im Immunsystem nicht mehr wahrnehmen.

Die Ergebnisse der wissenschaftichen Arbeitsgruppe von Professor Dr. Yvonne Samstag, Universitätsprofessorin für Zelluläre Immunologie am Institut für Immunologie des Universitätsklinikums Heidelberg (Geschäftsführender Direktor: Professor Dr. Stefan Meuer), sind in der Septemberausgabe der Fachzeitschrift Immunity veröffentlicht.

Sauerstoffradikale verändern Schlüsselprotein Cofilin

Freie Sauerstoffradikale, so genannte Reaktive Sauerstoffspezies (ROS), werden mit vielen Erkrankungen und Alterungsprozessen des Körpers in Verbindung gebracht. So ist bekannt, dass bestimmte Immunzellen, die Makrophagen, bei Krebserkrankungen verstärkt Wasserstoffperoxid (H2O2) produzieren. Dadurch werden T-Zellen, die der Körper für eine erfolgreiche Krebsabwehr benötigt, unterdrückt. "Wir konnten jetzt zeigen, wie Sauerstoffradikale auf molekularer Ebene T-Zellen schädigen", erklärt Professor Dr. Yvonne Samstag.

Die Sauerstoffradikale oxidieren und stören damit ein bestimmtes Protein, das so genannte Cofilin. Normalerweise sorgt Cofilin dafür, dass das Zellskelett von T-Zellen sich flexibel umbaut und die T-Zelle somit ihre Form den jeweiligen Anforderungen anpassen kann. "Ist diese Flexibilität gestört, leidet das komplette Immunsystem", sagt Professor Dr. Yvonne Samstag.

Nächstes Forschungsziel: Krebs, Entzündungen, Autoimmunerkrankungen

Ziel der Forscher ist es jetzt, herauszufinden, ob die Veränderung von Cofilin bei chronischen Entzündungsreaktionen, Tumorerkrankungen und Autoimmunerkrankungen eine Rolle spielt. "Die Oxidation von Cofilin könnte ein Maß dafür sein, wie gut die T-Zellen und damit das Immunsystem eines Patienten funktionieren", sagt Dr. Martin Klemke, Wissenschaftler des Teams um Professor Samstag und Erstautor der Veröffentlichung.

Dies könnte in Zukunft für die Diagnose und Therapie bei Krebserkrankungen eine Rolle spielen. So wäre es wäre möglicherweise sinnvoll, bei Krebserkrankungen Sauerstoffradikalen und ihren Auswirkungen auf Cofilin entgegenzuwirken.

Auch für weitere Forschungen auf dem Gebiet der Autoimmunerkrankungen, z.B. der Rheumatoiden Arthritis, spielen die Ergebnisse eine Rolle. "Bei Autoimmunerkrankungen möchte man, im Gegensatz zu Tumorerkrankungen, das überaktivierte Immunsystem eher dämpfen", erklärt Dr. Martin Klemke. Hier wären also "Sauerstoffstress" bzw. dessen Auswirkungen eher positiv zu beurteilen. Auch hier könnte der von den Heidelberger Experten beschriebene Mechanismus neue Ansatzpunkte liefern.

Literatur:
Klemke et al., Oxidation of Cofilin Mediates T Cell Hyporesponsiveness under Oxidative Stress Conditions, Immunity (2008), doi:10.1016/j.immuni.2008.06.016

(Der Originalartikel kann bei der Pressestelle des Universitätsklinikums Heidelberg unter contact@med.uni-heidelberg.de angefordert werden)

Ansprechpartner:
Dr. Martin Klemke
Institut für Immunologie
Im Neuenheimer Feld 305
69120 Heidelberg
Tel: 06221 56 4058
E-Mail: klemke@uni-heidelberg.de
Prof. Dr. Yvonne Samstag
Institut für Immunologie
Im Neuenheimer Feld 305
69120 Heidelberg
Tel: 06221 56 4039
E-Mail: yvonne.samstag@urz.uni-heidelberg.de
Internet:
www.sfb405.uni-hd.de/Samstag.html
www.klinikum.uni-heidelberg.de/Molekulare-Immunologie.2831.0.html
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de
Julia Bird
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.sfb405.uni-hd.de/Samstag.html
http://www.klinikum.uni-heidelberg.de/Molekulare-Immunologie.2831.0.html
http://www.klinikum.uni-heidelberg.de/presse

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie