Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immuntherapie gegen Hautkrebs und Pankreaskarzinom

09.03.2009
Die Immuntherapie von Tumoren benutzt das körpereigene Immunsystem, um Tumorzellen zu erkennen und abzutöten.

Damit solche vielversprechenden Behandlungsansätze funktionieren können, muss das Immunsystem Merkmale des Tumors, sogenannte Antigene, sehen und angreifen können. Unsere Arbeitsgruppen am Georg-Speyer-Haus in Frankfurt (Dr. Martin Zörnig) und am Nationalen Centrum für Tumorerkrankungen (NCT) in Heidelberg (Prof. Dirk Jäger) suchen in einem von der Wilhelm Sander-Stiftung geförderten Ansatz nach neuen Werkzeugen, um das eigene Immunsystem gegen Melanome und Pankreaskarzinome zu aktivieren.

Bisher waren Immuntherapieansätze nur in Einzelfällen wirksam. Nicht selten haben Tumorzellen die Zielantigene für das Immunsystem verloren und können sich so einer Immunerkennung entziehen. Für die Durchführung einer Immuntherapie werden Antigene, bzw. Bruchstücke dieser Antigene (sogenannte Peptide) zusammen mit einer Immun-stimulierenden Substanz den Patienten wiederholt gespritzt. Nach einigen Wochen bildet der Patient in der Regel eine Immunantwort gegen das betreffende Antigen aus. Idealerweise sollte sich diese Immunantwort dann auch gegen Antigen-tragende Tumorzellen richten und diese abtöten.

Für viele verschiedene Tumorarten gibt es bekannte Antigene, die vom Immunsystem erkannt und die für eine Immuntherapie eingesetzt werden können. In den meisten Fällen ist allerdings die normale Funktion dieser Antigene in der Tumorzelle nicht bekannt. Mit Hilfe eines besonderen Suchverfahrens (Screening), das wir in unserem Frankfurter Labor mit Tumormaterial in Hefezellen durchführen, identifizieren wir Tumormoleküle, die die sogenannte Apoptose in den Tumorzellen verhindern.

Apoptose ist ein genetisches Programm, das nach seiner Anschaltung zum Selbstmord der Zelle führt. Dieser Zellsuizid spielt unter normalen Umständen in einem gesunden Organismus eine wichtige Rolle z.B. bei der Embryonalentwicklung, der Gleichgewichtserhaltung und zellulären Erneuerung von Organen (Homeostase) und für die Beseitigung gefährlicher (z. B. infizierter oder transformierter) Zellen im Organismus.

Zusätzlich zu der Fähigkeit, sich unbegrenzt teilen zu können, sind Tumorzellen im Unterschied zu normalen Zellen auch resistent gegen Signale geworden, die Apoptose auslösen. Damit sind sie zum Beispiel widerstandsfähiger gegen Sauerstoff- und Nährstoffmangel. Die erhöhte Apoptoseresistenz in Tumorzellen ist häufig auf die unnatürlich hohe Menge apoptosehemmender Moleküle zurückzuführen.

Unsere Arbeitsgruppe am NCT in Heidelberg wird die im Hefe-Screening gefundenen anti-apoptotischen Tumormoleküle daraufhin überprüfen, ob das Immunsystem von Melanom- und Pankreaskarzinompatienten diese Moleküle erkennen und über eine solche Erkennung die Tumorzellen eliminieren kann. Wenn dies der Fall ist, können diese Moleküle für eine Impfung von Krebspatienten eingesetzt werden.

Ein weiterer Vorteil unseres Screeningverfahrens in der Hefe ist die Tatsache, dass die gefundenen Apoptose-hemmenden Moleküle von den Tumorzellen unbedingt gebraucht werden. Sie bieten sich deshalb auch als direktes Ziel für eine Hemmung im Rahmen einer molekularen Therapie an. Wenn die Funktion dieser Moleküle über einen geeigneten Wirkstoff in den Tumorzellen beeinträchtigt wird, stirbt die Tumorzelle besonders schnell und effektiv, wenn in Kombination mit dem Wirkstoff ein zytotoxisches Chemotherapeutikum gegeben wird.

Über den immuntherapeutischen Ansatz hinaus werden wir daher unsere gefundenen neuen apoptosehemmenden Moleküle gezielt durch den Einsatz sogenannter "siRNAs" in Tumorzellen inaktivieren und untersuchen, ob sich damit das Tumorwachstum in einem Mausmodell verlangsamen oder sogar verhindern lässt. Sollte dies der Fall sein, werden wir in weiteren Experimenten untersuchen, ob sich die entsprechenden Gene tatsächlich als "Target" für therapeutische Ansätze in der klinischen Anwendung eignen.

Kontakt:
Dr. Martin Zörnig, Chemotherapeutisches Forschungsinstitut, Georg-Speyer-Haus
Telefon: +49/69-6339515 / E-Mail: zoernig@em.uni-frankfurt.de
Prof. Dr. Dirk Jäger, Medizinische Onkologie, Nationales Centrum für Tumorerkrankungen, Universitätsklinikum Heidelberg

Telefon: +49/6221-56 7229 / E-Mail: dirk.jaeger@nct-heidelberg.de

Die Wilhelm Sander-Stiftung fördert dieses Forschungsprojekt mit über 200.000 €. Stiftungszweck der Stiftung ist die medizinische Forschung, insbesondere Projekte im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 160 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Bernhard Knappe | idw
Weitere Informationen:
http://www.sanst.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Proteomik hilft den Einfluss genetischer Variationen zu verstehen
27.03.2017 | Technische Universität München

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE