Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hüftprothesen sicher verschraubt

05.01.2009
Schrauben verankern künstliche Hüftgelenke fest am geschädigten Knochen des Patienten. Doch an welchen Stellen des Knochens finden die Schrauben sicheren Halt? Ein Simulationsmodell soll die Festigkeit der Knochen aus Computertomographie-Aufnahmen berechnen.

Hüftprothesen halten nicht ewig: Lockert sich das Implantat, müssen die Ärzte die Prothesen erneuern. Bei den meisten Patienten ist diese zweite Operation nach etwa 15 Jahren nötig. Durch die erste Prothese können die Beckenknochen an einigen Stellen abgenutzt sein.


Der Shaker bringt den eingespannten Knochen (links) zum Schwingen. Fraunhofer IWU

Zudem ändert sich mit zunehmendem Alter die Dichte der Knochen und damit ihre Festigkeit. Mediziner stehen daher vor der Frage, wo sie die Schrauben am besten setzen, die das künstliche Gelenk mit den Knochen verbinden. Und wie muss die Hüftprothese geformt sein, um sich optimal an die umliegenden Knochen anzupassen? Bisher untersuchen Ärzte die Patienten mit Computertomographie und ermitteln aus den Aufnahmen die grobe Dichte der Knochen. Über verschiedene Annahmen errechnen die Mediziner, wie fest die Knochen an welchen Stellen sind. Das Problem: Als Grundlage für die Simulationen gibt es zwar verschiedene Theorien, die Ergebnisse weichen allerdings erheblich von der Realität ab. Die geschädigten Knochen sind meist anders beschaffen, als die Simulation glauben macht.

Dies wollen Forscher des Fraunhofer-Instituts für Werkzeugmaschinen und Umformtechnik IWU in Dresden zusammen mit Kollegen vom Labor für Biomechanik der Universität Leipzig nun ändern: Sie entwickeln ein Modell, mit dem die Ärzte aus den computertomographischen Aufnahmen die Dichte und Elastizität des Knochens zuverlässig und realistisch berechnen können. Dazu übertragen die Forscher Methoden, mit denen üblicherweise Bauteile geprüft werden, auf menschliche Hüftknochen: Sie bringen den Knochen zum Schwingen. Bei Patienten ist diese Art der Untersuchung nicht möglich: Der Knochen muss in eine Apparatur eingespannt werden. »Über die Art der Schwingungen können wir auf lokale Eigenschaften des Knochens schließen – etwa die Dichte und Elastizität«, erklärt Martin Quickert, Gruppenleiter am IWU. Diese Ergebnisse vergleichen die Forscher mit computertomographischen Aufnahmen des Knochens und beschreiben die Zusammenhänge über ein mathematisches Modell.

Dieses soll künftig ermöglichen, die Knochenfestigkeit direkt aus den computertomographischen Aufnahmen zu ermitteln. Erste Untersuchungen an präparierten und so haltbar gemachten Knochen haben die Wissenschaftler bereits gemacht. In den kommenden Monaten versetzen sie auch unpräparierte, natürlich belassene Knochen in Schwingungen. In etwa zwei Jahren, hoffen die Forscher, erhalten die Ärzte aus Computertomographie-Aufnahmen genauere und realistischere Daten, wie die Beckenknochen des Patienten beschaffen sind. Die Prothesen können dann optimal verankert werden – und finden länger sicheren Halt.

Martin Quickert | Fraunhofer Gesellschaft
Weitere Informationen:
http://www.iwu.fraunhofer.de

Weitere Berichte zu: Beckenknochen Dichte Festigkeit Hüftprothese IWU Knochen Prothese Schraube Schwingung Simulation

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie