Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hoffnung für Übergewichtige

31.07.2014

Es gibt verschiedene Arten von Fettgewebe, die im Stoffwechsel unterschiedliche Aufgaben erfüllen: weißes, beiges und braunes.

Forschern am Helmholtz Zentrum München und der Harvard Medical School ist es nun erstmals gelungen, spezifische Oberflächenproteine zu identifizieren, mit deren Hilfe man die drei Arten unterscheiden kann. Dadurch lassen sich neue Behandlungsmöglichkeiten für Adipositas* entwickeln. Die Arbeiten wurden im Fachjournal `Science Translational Medicine` veröffentlicht.

Fett ist nicht gleich Fett. So unterscheidet man zwischen weißem, braunem und beigem Fettgewebe. Jedes dieser Gewebe hat unterschiedliche Funktionen und spielt eine jeweils eigene Rolle im Stoffwechsel. Im menschlichen Körper stellt das weiße Fettgewebe den mit Abstand größten Anteil dar, es dient in erster Linie als Energiedepot.

Die braunen Fettzellen hingegen erzeugen direkt Wärme aus dem gespeicherten Fett. Sie sind im erwachsenen menschlichen Körper nur an wenigen Stellen zu finden, kommen jedoch bei Säuglingen vor, und auch bei Nagetieren. Zusätzlich kennt man noch beige Fettzellen, welche eine besondere Art brauner Fettzellen darstellen. Sie entstehen innerhalb des weißen Fettgewebes vor allem bei Kälteeinfluss.

Einem Forscherteam um Dr. Siegfried Ussar vom Institut für Diabetes und Adipositas (IDO) am Helmholtz Zentrum München, Partner im Deutschen Zentrum für Diabetesforschung (DZD), und Professor C. Ronald Kahn vom Joslin Diabetes Center und der Harvard Medical School ist es nun gelungen, die unterschiedlichen Fettzellen anhand ihrer Oberflächenproteine ganz spezifisch zu unterscheiden. Dies eröffnet Hoffnung auf eine neue Behandlungsmethode für Fettleibige und Diabetiker.

Weißes Fettgewebe begünstigt Diabetes

Da das weiße Fettgewebe die Entstehung von Typ-2-Diabetes begünstigt und deshalb immer mehr Menschen unter Zuckerkrankheit leiden, sucht die moderne Medizin nach Wegen, das braune Fettgewebe dazu einzusetzen, Fett zu verbrennen.

„Durch seine Funktion als Wärmekraftwerk des Körpers besitzt das braune Fettgewebe die Funktion, große Mengen an Energie, welche ansonsten im weißen Fettgewebe gespeichert werden, zu verbrennen“, sagt Erstautor Ussar. Aus diesem Grund stellt die Aktivierung des braunen Fettgewebes durch Medikamente einen attraktiven Ansatz zur Behandlung von Adipositas und der daraus resultierenden Erkrankungen wie Typ-2-Diabetes dar.

Die Menge an braunem Fettgewebe ist individuell sehr verschieden. Bisher konnte man seinen Anteil allerdings nicht zuverlässig erfassen. Alle gängigen Verfahren beruhen auf der Messung der Aktivität dieses Gewebes; diese ist jedoch stark von äußeren Bedingungen abhängig, etwa von der Temperatur oder der Ernährung. Die neu entdeckten Oberflächenproteine bieten nun eine völlig andere Möglichkeit. Außerdem erlauben sie es, Wirkstoffe gezielt in das braune Fettgewebe zu bringen, indem man sie an diese Proteine ankoppeln lässt.

Hoffnung für Dickleibige

Die Aktivierung des braunen Fettgewebes ist aktuell eine der größten Hoffnungsträger in der Bekämpfung der Adipositas*. Sie ermöglicht es, Übergewicht zu verringern, ohne zwingend die Kalorienzufuhr zu reduzieren. Aus diesem Grund beschreiben unzählige Publikationen aus der Grundlagenforschung neue potenzielle Mechanismen zur Aktivierung oder Vermehrung des menschlichen braunen Fettgewebes. „Die Übertragung dieser Forschungsergebnisse in die Praxis scheitert jedoch häufig daran, dass die identifizierten Mechanismen auch wichtige Funktionen in anderen Organen haben und es so zu unkalkulierbaren Nebenwirkungen kommen kann“, erläutert Ussar. „Unsere Forschungsarbeiten zeigen jedoch einen Ausweg aus diesem Dilemma, da die von uns entdeckten Oberflächenmarker sehr spezifisch für die einzelnen Fettarten und unabhängig von der metabolischen Aktivität sind.“

Die Wissenschaftler hoffen, durch die Weiterentwicklung ihrer Forschungsergebnisse Wirkstoffe gezielt zum braunen Fettgewebe bringen und so eventuelle Nebenwirkungen stark reduzieren zu können. „Wir sind bereits dabei, zum Teil in der eigenen Gruppe und in Kollaboration mit anderen Gruppen am Helmholtz Zentrum München, spezifische Moleküle herzustellen, die diese Oberflächenproteine erkennen, um diese anschließend auf ihre Wirksamkeit zu untersuchen“, so Ussar. „Unser Ziel ist es, im nächsten Schritt gemeinsam mit Partnern aus der Industrie diese Moleküle für die Benutzung im Menschen weiterzuentwickeln.“

Weitere Informationen

*Adipositas: Hierbei handelt es sich um Fettleibigkeit, eine Ernährungs- und Stoffwechselkrankheit mit starkem Übergewicht, die durch eine über das normale Maß hinausgehende Vermehrung des Körperfettes mit krankhaften Auswirkungen gekennzeichnet ist. Sie wird in der Regel durch Überernährung und Bewegungsmangel verursacht und durch genetische Faktoren begünstigt. Adipositas-Patienten leiden auch vermehrt unter Typ-2-Diabetes.

Original-Publikation:

Ussar, S. et al. (2014). ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipo-cytes, Science Translational Medicine, doi: 30 July 2014, Vol. 6, Issue 247, p. 247ra103, DOI: 10.1126/scitranslmed.3008490

Link zur Fachpublikation: http://stm.sciencemag.org/content/6/247/247ra103.short?rss=1

Special Notes to Reporters:

More information, including a copy of the paper, can be found online at the Science Translational Medicine press package at www.eurekalert.org/jrnls/scitransmed

Das Helmholtz Zentrum Münchenverfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Ge-netik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.200 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören. Das Helmholtz Zentrum München ist Partner im Deutschen Zentrum für Diabetesforschung e.V. http://www.helmholtz-muenchen.de/

Das Deutsche Zentrum für Diabetesforschung e.V. bündelt Experten auf dem Gebiet der Diabetesforschung und verzahnt Grundlagenforschung, Epidemiologie und klinische Anwendung. Mitglieder des Verbunds sind das Deutsche Diabetes-Zentrum DDZ in Düsseldorf, das Deutsche Institut für Ernährungsforschung DIfE in Potsdam-Rehbrücke, das Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, die Paul Langerhans Institute des Carl Gustav Carus Universitätsklinikums Dresden und der Eberhard-Karls-Universität Tübingen sowie die Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. und die Helmholtz-Gemeinschaft Deutscher Forschungszentren. Ziel des DZD ist es, über einen neuartigen, integrativen For-schungsansatz Antworten auf offene Fragen in der Diabetesforschung zu finden und einen wesentlichen Beitrag zur Verbesserung von Prävention, Diagnose und Therapie des Diabetes mellitus zu leisten.http://www.diabetesforschung.com/index.html

Das Institut für Diabetes und Adipositas (IDO) erforscht die Erkrankungsmechanismen des Metabolischen Syn-droms mit systembiologischen und translationalen Ansätzen. Mittels zellulärer Systeme, genetisch modifizierter Mausmodelle und klinischer Interventionsstudien sollen neue Signalwege und Zielstrukturen entdeckt werden. Ziel ist die interdisziplinäre Entwicklung innovativer Therapieansätze zur personalisierten Prävention und Behandlung von Adipositas, Diabetes und deren Begleiterkrankungen. Das IDO ist Teil des Helmholtz Diabetes Center (HDC).http://www.helmholtz-muenchen.de/ido/index.html


Ansprechpartner für die Medien

Abteilung Kommunikation, Helmholtz Zentrum München - Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Tel. 089 3187 2238, E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner

Dr. Siegfried Ussar, Helmholtz Zentrum München - Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Diabetes und Adipositas, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. 089-3187-2047, E-mail: siegfried.ussar@helmholtz-muenchen.de

Susanne Eichacker | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Vitamin-Mangel, der Kampf gegen die Antriebslosigkeit und Nahrung für die Nerven
08.12.2016 | PhytoDoc Ltd.

nachricht Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs
06.12.2016 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie