Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hörentwicklung: Wie das Ohr reift

05.02.2014
Grundlagenforschung zum Hören: Göttinger Wissenschaftler klären molekulare Details der Hörentwicklung. Veröffentlichung in "The European Molecular Biology Organization Journal".

"Hören können" ist ein komplexes Geschehen. Auch wenn alle anatomischen Teile eines Ohrs angelegt sind, ist Hören nicht sofort möglich. Wie entwickelt das Ohr seine volle Funktionsfähigkeit? Dieser Prozess findet bei Menschen im Mutterleib statt und ist noch recht wenig verstanden.

Ein Göttinger Forscherteam unter Leitung des InnenOhrLabors in der Klinik für Hals-Nasen-Ohrenheilkunde der Universitätsmedizin Göttingen (UMG) hat mit Untersuchungen an Mäusen im Detail aufgedeckt, welche Entwicklungsschritte auf molekularer und zellulärer Ebene ablaufen, damit Hören gelingt.

Die Forschungsergebnisse erklären, auf welche Weise in der Hörschnecke die dafür wichtigen synaptischen Kontakte zwischen Haarsinneszellen und Nervenzellen (Synapsen) zu voller Funktionstüchtigkeit reifen. Erst nach dieser Reifung können die Synapsen den Schall effizient und präzise in Nervensignale übersetzen. Die Forschungsergebnisse wurden am 17. Januar 2014, in der Onlineausgabe der renommierten Fachzeitschrift "The European Molecular Biology Organization Journal" veröffentlicht.

Originalveröffentlichung:
Aaron B Wong*, Mark A Rutherford*, Mantas Gabrielaitis*, Tina Pangršiè, Fabian Göttfert, Thomas Frank, Susann Michanski, Stefan Hell, Fred Wolf#, Carolin Wichmann#, and Tobias Moser# (2014) Developmental refinement of hair cell synapses tightens the coupling of Ca2+ influx to exocytosis. EMBO Journal.

DOI10.1002/embj.201387110

"Die Haarzellen unserer Hörschnecke sind zunächst Schrittmacher, die die Entwicklung des Hörsystems antreiben. Sie werden erst nach der Reifung "echte" Sinneszellen, die Umgebungsreize in ein für unseren Körper verwertbares Signal wandeln", sagt Prof. Dr. Tobias Moser, Senior-Autor der Publikation, Leiter des InnenOhrLabors und Sprecher des Sonderforschungsbereichs "Zelluläre Mechanismen Sensorischer Verarbeitung" SFB 889. Das Ergebnis der Forschung: Bevor ein Ton wahrnehmbar wird, muss die Schallinformation, die in das Ohr eintrifft, zunächst an den synaptischen Kontakten zwischen Haarsinneszellen und Nervenzellen in der Hörschnecke in Nervensignale umgewandelt werden. Die Nervensignale werden dann bis zum Gehirn weitergeleitet. Die synaptischen Kontakte zwischen Haarsinneszellen und Nervenzellen in der Hörschnecke reifen zu Beginn des Hörens. Erst nach diesem Reifungsprozess können sie die Information des Schalls mit einer zeitlichen Präzision von weniger als einer tausendstel Sekunde in Nervenimpulse übersetzen.

Die Erkenntnisse haben die Göttinger Forscher mit Untersuchungen an jungen Mäusen gewonnen. Bei Nagetieren beginnt das Hören erst nach der Geburt und die Reifung der Hörschnecke durchläuft dabei verschiedene Stadien. Besonders spannend sind dabei die Tage um den Beginn des Hörens. Noch während das Ohr ausreift und bevor Geräusche wie die der Mutter oder Geschwister gehört werden können, imitiert das Innenohr den Hörvorgang. Damit, so vermuten die Forscher, wird die korrekte Verschaltung und Reifung des zentralnervösen Hörsystems vorangetrieben. Erst nach Abschluss eines Reifungs- oder Trainingsprogramms werden schließlich Schallreize präzise in Nervensignale übersetzt. Das Hören beginnt.

FORSCHUNGSERGEBNISSE ZUM HÖREN IM DETAIL
Vor Beginn des Hörens sind die Haarsinneszellen sehr aktiv. Sie "feuern" elektrische Impulse und verursachen so eine rhythmische Aktivität in der Hörbahn. Dazu nutzen Haarsinneszellen tausende von Eiweißporen, sogenannte Kalziumkanäle. Elektrisch gesteuerte Kalziumionen fließen in die Zelle. Kalziumionen wirken in der Zelle als Signale. An den Kontaktstellen der reifenden Haarsinneszellen führen die Kalziumionen zur Freisetzung des Botenstoffs Glutamat. Die reifenden Haarsinneszellen müssen dann viel Energie aufwenden, um die große Menge einströmender Kalziumionen wieder aus dem Zellinneren zu entfernen. Denn Kalziumionen sind in großer Menge giftig für die Zelle.

Warum dieser große Aufwand? Vermutlich ist die rhythmische Aktivierung vor dem Hörbeginn wichtig, um die Hörbahn zu voller Reifung zu bringen. Offenbar "feuern" benachbarte Zellen ihre elektrischen Impulse gleichzeitig. Auf diese Weise werden benachbarte Nervenzellen synchron stimuliert. Diese synchrone Aktivität könnte zur Verfeinerung der Repräsentation der verschiedenen Tonhöhen in der Hörbahn beitragen.

Die Göttinger Forscher konnten nun herausfinden: Wenn Haarsinneszellen einen synaptischen Kontakt mit einer Nervenzelle bilden, werden von beiden Zellen an diesem Kontakt zunächst mehrere Kommunikationskanäle angelegt. So werden anfangs mehrere Paare aus Ansammlungen von Kalziumkanälen der Haarsinneszellen und Glutamat-rezeptoren der Nervenzellen gebildet. Während der Reifung erfolgt dann eine Art "Konsolidierung": Am Ende des Prozesses gibt es schließlich nur noch ein einziges Paar. Diese Paarung von Haarsinneszelle und Nervenzelle verfügt über eine große aktive Zone, viele Kalziumkanäle und einer Glutamatrezeptor-Ansammlung in der Nervenzelle.

"Wenn das Ohr reift, ändert sich also vor allem die räumliche Organisation von Eiweißen, die für synaptische Kommunikation wichtig sind. Die Ultrastruktur der synaptischen Kontaktstellen von Haarsinneszellen und Nervenzellen durchläuft dafür eine ausgeprägte Reifung. Diese führt zu einer Optimierung der synaptischen Verarbeitung von Schallreizen", sagt Dr. Carolin Wichmann, Arbeitsgruppenleiterin im InnenOhrLabor der Klinik für Hals-Nasen-Ohrenheilkunde der UMG und Projektleiterin im SFB 889.

Am Ende der Reifung der synaptischen Kontaktstelle steht eine sehr spezielle Form von Zusammenarbeit zwischen Kalziumkanal und Glutamatfreisetzung. Dabei kommt einzelnen Kalziumkanälen eine herausragende Rolle zu. "Auf diese Weise wird der für das Hören essentielle Prozess - die synaptischen Übertragung von Information über den Schallreiz - an die Eigenschaften des Kalziumkanals gebunden und macht diesen zum wichtigsten Stellglied beim Informationsfluss aus dem Innenohr", sagt Aaron Wong, einer der Erst-Autoren der Publikation und Mitarbeiter im InnenOhrLabor. Dies haben sein Kollege und weiterer Erst-Autor, Mantas Gabrielaitis, und Prof. Dr. Fred Wolf, Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen, Sprecher des Göttinger Bernstein Zentrums für Theoretische Neurowissenschaften und Projektleiter im SFB 889, durch mathematische Modelle überprüft und bestätigt.

WEITERE INFORMATIONEN
Zu den Arbeitsgruppen von Dr. C. Wichmann und Prof. Dr. T. Moser: http://www.innerearlab.uni-goettingen.de
Zur Arbeitsgruppe von Prof. Dr. F. Wolf:
http://www.nld.ds.mpg.de/research/groups/theoretical-neurophysics
WEITERE INFORMATIONEN
Universitätsmedizin Göttingen
InnenOhrLabor. Klinik für Hals-Nasen-Ohrenheilkunde
Dr. Carolin Wichmann und Prof. Dr. Tobias Moser
Telefon 0551 / 39-8968, tmoser@gwdg.de

Stefan Weller | Uni Göttingen
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Kokosöl verlängert Leben bei peroxisomalen Störungen
20.06.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Überdosis Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics