Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hörentwicklung: Wie das Ohr reift

05.02.2014
Grundlagenforschung zum Hören: Göttinger Wissenschaftler klären molekulare Details der Hörentwicklung. Veröffentlichung in "The European Molecular Biology Organization Journal".

"Hören können" ist ein komplexes Geschehen. Auch wenn alle anatomischen Teile eines Ohrs angelegt sind, ist Hören nicht sofort möglich. Wie entwickelt das Ohr seine volle Funktionsfähigkeit? Dieser Prozess findet bei Menschen im Mutterleib statt und ist noch recht wenig verstanden.

Ein Göttinger Forscherteam unter Leitung des InnenOhrLabors in der Klinik für Hals-Nasen-Ohrenheilkunde der Universitätsmedizin Göttingen (UMG) hat mit Untersuchungen an Mäusen im Detail aufgedeckt, welche Entwicklungsschritte auf molekularer und zellulärer Ebene ablaufen, damit Hören gelingt.

Die Forschungsergebnisse erklären, auf welche Weise in der Hörschnecke die dafür wichtigen synaptischen Kontakte zwischen Haarsinneszellen und Nervenzellen (Synapsen) zu voller Funktionstüchtigkeit reifen. Erst nach dieser Reifung können die Synapsen den Schall effizient und präzise in Nervensignale übersetzen. Die Forschungsergebnisse wurden am 17. Januar 2014, in der Onlineausgabe der renommierten Fachzeitschrift "The European Molecular Biology Organization Journal" veröffentlicht.

Originalveröffentlichung:
Aaron B Wong*, Mark A Rutherford*, Mantas Gabrielaitis*, Tina Pangršiè, Fabian Göttfert, Thomas Frank, Susann Michanski, Stefan Hell, Fred Wolf#, Carolin Wichmann#, and Tobias Moser# (2014) Developmental refinement of hair cell synapses tightens the coupling of Ca2+ influx to exocytosis. EMBO Journal.

DOI10.1002/embj.201387110

"Die Haarzellen unserer Hörschnecke sind zunächst Schrittmacher, die die Entwicklung des Hörsystems antreiben. Sie werden erst nach der Reifung "echte" Sinneszellen, die Umgebungsreize in ein für unseren Körper verwertbares Signal wandeln", sagt Prof. Dr. Tobias Moser, Senior-Autor der Publikation, Leiter des InnenOhrLabors und Sprecher des Sonderforschungsbereichs "Zelluläre Mechanismen Sensorischer Verarbeitung" SFB 889. Das Ergebnis der Forschung: Bevor ein Ton wahrnehmbar wird, muss die Schallinformation, die in das Ohr eintrifft, zunächst an den synaptischen Kontakten zwischen Haarsinneszellen und Nervenzellen in der Hörschnecke in Nervensignale umgewandelt werden. Die Nervensignale werden dann bis zum Gehirn weitergeleitet. Die synaptischen Kontakte zwischen Haarsinneszellen und Nervenzellen in der Hörschnecke reifen zu Beginn des Hörens. Erst nach diesem Reifungsprozess können sie die Information des Schalls mit einer zeitlichen Präzision von weniger als einer tausendstel Sekunde in Nervenimpulse übersetzen.

Die Erkenntnisse haben die Göttinger Forscher mit Untersuchungen an jungen Mäusen gewonnen. Bei Nagetieren beginnt das Hören erst nach der Geburt und die Reifung der Hörschnecke durchläuft dabei verschiedene Stadien. Besonders spannend sind dabei die Tage um den Beginn des Hörens. Noch während das Ohr ausreift und bevor Geräusche wie die der Mutter oder Geschwister gehört werden können, imitiert das Innenohr den Hörvorgang. Damit, so vermuten die Forscher, wird die korrekte Verschaltung und Reifung des zentralnervösen Hörsystems vorangetrieben. Erst nach Abschluss eines Reifungs- oder Trainingsprogramms werden schließlich Schallreize präzise in Nervensignale übersetzt. Das Hören beginnt.

FORSCHUNGSERGEBNISSE ZUM HÖREN IM DETAIL
Vor Beginn des Hörens sind die Haarsinneszellen sehr aktiv. Sie "feuern" elektrische Impulse und verursachen so eine rhythmische Aktivität in der Hörbahn. Dazu nutzen Haarsinneszellen tausende von Eiweißporen, sogenannte Kalziumkanäle. Elektrisch gesteuerte Kalziumionen fließen in die Zelle. Kalziumionen wirken in der Zelle als Signale. An den Kontaktstellen der reifenden Haarsinneszellen führen die Kalziumionen zur Freisetzung des Botenstoffs Glutamat. Die reifenden Haarsinneszellen müssen dann viel Energie aufwenden, um die große Menge einströmender Kalziumionen wieder aus dem Zellinneren zu entfernen. Denn Kalziumionen sind in großer Menge giftig für die Zelle.

Warum dieser große Aufwand? Vermutlich ist die rhythmische Aktivierung vor dem Hörbeginn wichtig, um die Hörbahn zu voller Reifung zu bringen. Offenbar "feuern" benachbarte Zellen ihre elektrischen Impulse gleichzeitig. Auf diese Weise werden benachbarte Nervenzellen synchron stimuliert. Diese synchrone Aktivität könnte zur Verfeinerung der Repräsentation der verschiedenen Tonhöhen in der Hörbahn beitragen.

Die Göttinger Forscher konnten nun herausfinden: Wenn Haarsinneszellen einen synaptischen Kontakt mit einer Nervenzelle bilden, werden von beiden Zellen an diesem Kontakt zunächst mehrere Kommunikationskanäle angelegt. So werden anfangs mehrere Paare aus Ansammlungen von Kalziumkanälen der Haarsinneszellen und Glutamat-rezeptoren der Nervenzellen gebildet. Während der Reifung erfolgt dann eine Art "Konsolidierung": Am Ende des Prozesses gibt es schließlich nur noch ein einziges Paar. Diese Paarung von Haarsinneszelle und Nervenzelle verfügt über eine große aktive Zone, viele Kalziumkanäle und einer Glutamatrezeptor-Ansammlung in der Nervenzelle.

"Wenn das Ohr reift, ändert sich also vor allem die räumliche Organisation von Eiweißen, die für synaptische Kommunikation wichtig sind. Die Ultrastruktur der synaptischen Kontaktstellen von Haarsinneszellen und Nervenzellen durchläuft dafür eine ausgeprägte Reifung. Diese führt zu einer Optimierung der synaptischen Verarbeitung von Schallreizen", sagt Dr. Carolin Wichmann, Arbeitsgruppenleiterin im InnenOhrLabor der Klinik für Hals-Nasen-Ohrenheilkunde der UMG und Projektleiterin im SFB 889.

Am Ende der Reifung der synaptischen Kontaktstelle steht eine sehr spezielle Form von Zusammenarbeit zwischen Kalziumkanal und Glutamatfreisetzung. Dabei kommt einzelnen Kalziumkanälen eine herausragende Rolle zu. "Auf diese Weise wird der für das Hören essentielle Prozess - die synaptischen Übertragung von Information über den Schallreiz - an die Eigenschaften des Kalziumkanals gebunden und macht diesen zum wichtigsten Stellglied beim Informationsfluss aus dem Innenohr", sagt Aaron Wong, einer der Erst-Autoren der Publikation und Mitarbeiter im InnenOhrLabor. Dies haben sein Kollege und weiterer Erst-Autor, Mantas Gabrielaitis, und Prof. Dr. Fred Wolf, Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen, Sprecher des Göttinger Bernstein Zentrums für Theoretische Neurowissenschaften und Projektleiter im SFB 889, durch mathematische Modelle überprüft und bestätigt.

WEITERE INFORMATIONEN
Zu den Arbeitsgruppen von Dr. C. Wichmann und Prof. Dr. T. Moser: http://www.innerearlab.uni-goettingen.de
Zur Arbeitsgruppe von Prof. Dr. F. Wolf:
http://www.nld.ds.mpg.de/research/groups/theoretical-neurophysics
WEITERE INFORMATIONEN
Universitätsmedizin Göttingen
InnenOhrLabor. Klinik für Hals-Nasen-Ohrenheilkunde
Dr. Carolin Wichmann und Prof. Dr. Tobias Moser
Telefon 0551 / 39-8968, tmoser@gwdg.de

Stefan Weller | Uni Göttingen
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt
18.10.2017 | Universität Bern

nachricht Aromatherapie bei COPD
12.05.2015 | Airnergy AG

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie