Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hörentwicklung: Wie das Ohr reift

05.02.2014
Grundlagenforschung zum Hören: Göttinger Wissenschaftler klären molekulare Details der Hörentwicklung. Veröffentlichung in "The European Molecular Biology Organization Journal".

"Hören können" ist ein komplexes Geschehen. Auch wenn alle anatomischen Teile eines Ohrs angelegt sind, ist Hören nicht sofort möglich. Wie entwickelt das Ohr seine volle Funktionsfähigkeit? Dieser Prozess findet bei Menschen im Mutterleib statt und ist noch recht wenig verstanden.

Ein Göttinger Forscherteam unter Leitung des InnenOhrLabors in der Klinik für Hals-Nasen-Ohrenheilkunde der Universitätsmedizin Göttingen (UMG) hat mit Untersuchungen an Mäusen im Detail aufgedeckt, welche Entwicklungsschritte auf molekularer und zellulärer Ebene ablaufen, damit Hören gelingt.

Die Forschungsergebnisse erklären, auf welche Weise in der Hörschnecke die dafür wichtigen synaptischen Kontakte zwischen Haarsinneszellen und Nervenzellen (Synapsen) zu voller Funktionstüchtigkeit reifen. Erst nach dieser Reifung können die Synapsen den Schall effizient und präzise in Nervensignale übersetzen. Die Forschungsergebnisse wurden am 17. Januar 2014, in der Onlineausgabe der renommierten Fachzeitschrift "The European Molecular Biology Organization Journal" veröffentlicht.

Originalveröffentlichung:
Aaron B Wong*, Mark A Rutherford*, Mantas Gabrielaitis*, Tina Pangršiè, Fabian Göttfert, Thomas Frank, Susann Michanski, Stefan Hell, Fred Wolf#, Carolin Wichmann#, and Tobias Moser# (2014) Developmental refinement of hair cell synapses tightens the coupling of Ca2+ influx to exocytosis. EMBO Journal.

DOI10.1002/embj.201387110

"Die Haarzellen unserer Hörschnecke sind zunächst Schrittmacher, die die Entwicklung des Hörsystems antreiben. Sie werden erst nach der Reifung "echte" Sinneszellen, die Umgebungsreize in ein für unseren Körper verwertbares Signal wandeln", sagt Prof. Dr. Tobias Moser, Senior-Autor der Publikation, Leiter des InnenOhrLabors und Sprecher des Sonderforschungsbereichs "Zelluläre Mechanismen Sensorischer Verarbeitung" SFB 889. Das Ergebnis der Forschung: Bevor ein Ton wahrnehmbar wird, muss die Schallinformation, die in das Ohr eintrifft, zunächst an den synaptischen Kontakten zwischen Haarsinneszellen und Nervenzellen in der Hörschnecke in Nervensignale umgewandelt werden. Die Nervensignale werden dann bis zum Gehirn weitergeleitet. Die synaptischen Kontakte zwischen Haarsinneszellen und Nervenzellen in der Hörschnecke reifen zu Beginn des Hörens. Erst nach diesem Reifungsprozess können sie die Information des Schalls mit einer zeitlichen Präzision von weniger als einer tausendstel Sekunde in Nervenimpulse übersetzen.

Die Erkenntnisse haben die Göttinger Forscher mit Untersuchungen an jungen Mäusen gewonnen. Bei Nagetieren beginnt das Hören erst nach der Geburt und die Reifung der Hörschnecke durchläuft dabei verschiedene Stadien. Besonders spannend sind dabei die Tage um den Beginn des Hörens. Noch während das Ohr ausreift und bevor Geräusche wie die der Mutter oder Geschwister gehört werden können, imitiert das Innenohr den Hörvorgang. Damit, so vermuten die Forscher, wird die korrekte Verschaltung und Reifung des zentralnervösen Hörsystems vorangetrieben. Erst nach Abschluss eines Reifungs- oder Trainingsprogramms werden schließlich Schallreize präzise in Nervensignale übersetzt. Das Hören beginnt.

FORSCHUNGSERGEBNISSE ZUM HÖREN IM DETAIL
Vor Beginn des Hörens sind die Haarsinneszellen sehr aktiv. Sie "feuern" elektrische Impulse und verursachen so eine rhythmische Aktivität in der Hörbahn. Dazu nutzen Haarsinneszellen tausende von Eiweißporen, sogenannte Kalziumkanäle. Elektrisch gesteuerte Kalziumionen fließen in die Zelle. Kalziumionen wirken in der Zelle als Signale. An den Kontaktstellen der reifenden Haarsinneszellen führen die Kalziumionen zur Freisetzung des Botenstoffs Glutamat. Die reifenden Haarsinneszellen müssen dann viel Energie aufwenden, um die große Menge einströmender Kalziumionen wieder aus dem Zellinneren zu entfernen. Denn Kalziumionen sind in großer Menge giftig für die Zelle.

Warum dieser große Aufwand? Vermutlich ist die rhythmische Aktivierung vor dem Hörbeginn wichtig, um die Hörbahn zu voller Reifung zu bringen. Offenbar "feuern" benachbarte Zellen ihre elektrischen Impulse gleichzeitig. Auf diese Weise werden benachbarte Nervenzellen synchron stimuliert. Diese synchrone Aktivität könnte zur Verfeinerung der Repräsentation der verschiedenen Tonhöhen in der Hörbahn beitragen.

Die Göttinger Forscher konnten nun herausfinden: Wenn Haarsinneszellen einen synaptischen Kontakt mit einer Nervenzelle bilden, werden von beiden Zellen an diesem Kontakt zunächst mehrere Kommunikationskanäle angelegt. So werden anfangs mehrere Paare aus Ansammlungen von Kalziumkanälen der Haarsinneszellen und Glutamat-rezeptoren der Nervenzellen gebildet. Während der Reifung erfolgt dann eine Art "Konsolidierung": Am Ende des Prozesses gibt es schließlich nur noch ein einziges Paar. Diese Paarung von Haarsinneszelle und Nervenzelle verfügt über eine große aktive Zone, viele Kalziumkanäle und einer Glutamatrezeptor-Ansammlung in der Nervenzelle.

"Wenn das Ohr reift, ändert sich also vor allem die räumliche Organisation von Eiweißen, die für synaptische Kommunikation wichtig sind. Die Ultrastruktur der synaptischen Kontaktstellen von Haarsinneszellen und Nervenzellen durchläuft dafür eine ausgeprägte Reifung. Diese führt zu einer Optimierung der synaptischen Verarbeitung von Schallreizen", sagt Dr. Carolin Wichmann, Arbeitsgruppenleiterin im InnenOhrLabor der Klinik für Hals-Nasen-Ohrenheilkunde der UMG und Projektleiterin im SFB 889.

Am Ende der Reifung der synaptischen Kontaktstelle steht eine sehr spezielle Form von Zusammenarbeit zwischen Kalziumkanal und Glutamatfreisetzung. Dabei kommt einzelnen Kalziumkanälen eine herausragende Rolle zu. "Auf diese Weise wird der für das Hören essentielle Prozess - die synaptischen Übertragung von Information über den Schallreiz - an die Eigenschaften des Kalziumkanals gebunden und macht diesen zum wichtigsten Stellglied beim Informationsfluss aus dem Innenohr", sagt Aaron Wong, einer der Erst-Autoren der Publikation und Mitarbeiter im InnenOhrLabor. Dies haben sein Kollege und weiterer Erst-Autor, Mantas Gabrielaitis, und Prof. Dr. Fred Wolf, Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen, Sprecher des Göttinger Bernstein Zentrums für Theoretische Neurowissenschaften und Projektleiter im SFB 889, durch mathematische Modelle überprüft und bestätigt.

WEITERE INFORMATIONEN
Zu den Arbeitsgruppen von Dr. C. Wichmann und Prof. Dr. T. Moser: http://www.innerearlab.uni-goettingen.de
Zur Arbeitsgruppe von Prof. Dr. F. Wolf:
http://www.nld.ds.mpg.de/research/groups/theoretical-neurophysics
WEITERE INFORMATIONEN
Universitätsmedizin Göttingen
InnenOhrLabor. Klinik für Hals-Nasen-Ohrenheilkunde
Dr. Carolin Wichmann und Prof. Dr. Tobias Moser
Telefon 0551 / 39-8968, tmoser@gwdg.de

Stefan Weller | Uni Göttingen
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neues Hydrogel verbessert die Wundheilung
25.04.2017 | Universität Leipzig

nachricht Konfetti im Gehirn: Steuerung wichtiger Immunzellen bei Hirnkrankheiten geklärt
24.04.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen