Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hirntumore präzise markiert

07.01.2011
Nachwuchswissenschaftlerin des Universitätsklinikums Heidelberg zeigt Überlegenheit eines neuen Kontrastmittels

Das neue Kontrastmittel Gadofluorine M markiert die Ausdehnung von Hirntumoren präziser als die in der klinischen Praxis eingesetzten Produkte. Zudem übertrifft es konventionelle Kontrastmittel noch in einem weiteren Punkt: Es färbt auch frühe Tumorstadien vollständig an.

Diese Eigenschaften hat Dr. Leonie Jestaedt, Nachwuchswissenschaftlerin am Universitätsklinikum Heidelberg, im Rahmen einer Studie erstmals beschrieben. Gadofluorine M kann nun im Tierversuch dazu beitragen, die Wirkung neuer Therapien genau zu verfolgen und zu verbessern. Auch ein zukünftiger Einsatz bei Patienten ist denkbar.

Ob ein bösartiger Hirntumor vollständig entfernt werden kann und wie die Behandlung nach der Operation weitergeht, hängt u.a. von seiner Größe und Lage ab. Je genauer Neuroradiologen daher die Tumorgrenzen mit Hilfe von Magnetresonanztomographie (MRT) und Kontrastmitteln darstellen können, desto passender ist die Therapie. Auch der Erfolg des Eingriffs selbst hängt von guter Bildgebung ab: Die Tumoren lassen sich unter dem OP-Mikroskop oftmals nicht sicher vom gesunden Hirngewebe unterscheiden. Daher fließen die Bilddaten der MRT in die dreidimensionale OP-Planung am Computer ein.

Gadofluorine M bindet sich spezifisch an Tumorzellen

„Die bisher zur Verfügung stehenden Kontrastmittel zeigen die Tumorausdehnung und Tumorränder nicht sehr genau an“, erklärt Dr. Leonie Jestaedt, Assistenzärztin der Abteilung für Neuroradiologie (Ärztlicher Direktor: Professor Dr. Martin Bendszus) am Universitätsklinikum Heidelberg. Sie verglich an Mäusen mit Hirntumoren das neue MRT-Kontrastmittel Gadofluorine M (GfM) mit dem in der klinischen Praxis gängigen Gadolinium-DTPA. Letzteres sammelt sich dort, wo der Tumor die Wände der Blutgefäße im Gehirn durchlässig gemacht hat. GfM dagegen bindet spezifisch an Tumorzellen.

Das Ergebnis, zu dem die Neuroradiologin kommt: GfM ist dem konventionellen Kontrastmittel überlegen. Besonders bei frühen Stadien zeigt es die Ausdehnung der Tumoren deutlich präziser an. Außerdem bindet es dauerhaft an die Zellen; für Folgeuntersuchungen mit dem MRT, z.B. während der Operation, müsste dem Patienten kein weiteres Kontrastmittel gespritzt werden. GfM kann mit einem für das Auge sichtbaren Farbstoff gekoppelt werden; das Tumorgewebe wäre daher bei der Präparation gut von gesunden Gehirnzellen zu unterscheiden. „Die zuverlässige Anfärbung des gesamten Tumors könnte dem Neurochirurgen die Arbeit bei der Operation erleichtern“, so Dr. Jestaedt, die für ihre Studie jetzt von der Deutschen Gesellschaft für Neuroradiologie mit dem Marc-Dünzl-Preis ausgezeichnet wurde. Er ist projektgebunden mit 3.000 Euro dotiert.

Neue Therapien im Tierversuch genau verfolgen

Bisher ist GfM nur für den experimentellen Gebrauch zugelassen: Wissenschaftler können damit den Verlauf neuer Therapien im Tiermodell genauer verfolgen als mit anderen Kontrastmitteln – eine Voraussetzung, um sie stetig zu verbessern. Bevor ein Einsatz des Kontrastmittels bei Patienten möglich ist, müssen allerdings noch zahlreiche weitere Untersuchungen durchgeführt werden.

Weitere Informationen über die Abteilung für Neuroradiologie im Internet:
http://www.klinikum.uni-heidelberg.de/Neuroradiologie.106685.0.html
Ansprechpartnerin:
Dr. Leonie Jestaedt
Abteilung für Neuroradiologie
Neurologische Universitätsklinik Heidelberg
Tel.: 06221 / 56 75 66 (Sekr.)
E-Mail: Leonie.Jestaedt@med.uni-heidelberg.de
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 10.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 50 Departments, Kliniken und Fachabteilungen mit ca. 2.000 Betten werden jährlich rund 550.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.600 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland.

http://www.klinikum.uni-heidelberg.de

Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Herzerkrankungen: Wenn weniger mehr ist
30.03.2017 | Universitätsspital Bern

nachricht Stoßlüften ist besser als gekippte Fenster
29.03.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE