Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hirnforschung: Neuronale Grundlagen sozialer Interaktionen weiter entschlüsselt

05.09.2014

Tübinger Hirnforschern ist es erstmals gelungen, die Region im Gehirn zu identifizieren, die es uns ermöglicht unseren Blick und damit unsere Aufmerksamkeit, vom Blick des Anderen geleitet, denselben Dingen zuzuwenden wie unser Gegenüber. Entdeckt haben die Forscher die verantwortliche Blickfolgeregion mittels funktioneller Magnetresonanztomografie (fMRT) in Experimenten an Rhesusaffen. Sie befindet sich im hinteren Bereich der oberen Schläfenfurche. Das belegt die aktuell im internationalen Fachjournal eLife erschienene Publikation.

Bisher war nicht bekannt, wie es dem Gehirn gelingt die Informationen, die es über die Augen und das Gesicht des Anderen erhält, in eine präzise Blickwendung zu „übersetzen“. Störungen dieses Verständnisses sind vermutlich eine wesentliche Ursache des Autismus.

Ein erfolgreiches soziales Miteinander erfordert ein Verständnis der Erwartungen, Wünsche und Absichten unseres Gegenübers. Ein wesentlicher Schritt dorthin ist es, die Handlungsziele des Anderen zu erfassen, die sich in der Ausrichtung seines Blickes verraten, die eigene Aufmerksamkeit diesen Zielen zuzuwenden und damit „gemeinsame Aufmerksamkeit“ (joint attention) zu etablieren.

Menschen, die unter einer eingeschränkten Fähigkeit zu sozialen Interaktionen beispielsweise infolge von Erkrankungen aus dem Formenkreis des Autismus leiden, können häufig den Blick des Anderen nicht „lesen“. Dadurch sind sie nicht in der Lage gemeinsame Aufmerksamkeit zu etablieren. Somit entsteht, so die Annahme der Experten, eine wesentliche Ursache des sozialen Defizits.

Um die Handlungsziele unseres Gegenübers zu erkennen, ist es nicht nur notwendig die Ausrichtung des Blickes und des Gesichtes zu erfassen. Wir müssen vielmehr auch Informationen über mögliche Objekte des Interesses und deren räumliche Position relativ zu Beobachter und dem Beobachtetem zur Verfügung haben. Auf der Grundlage dieser Informationen kann die erforderliche Blickwendung des Beobachters abgeleitet werden. In welcher Hirnregion das geschieht und was sie hierbei leistet war bislang gänzlich unbekannt: „Erst durch ein besseres Verständnis der beteiligten Hirnstrukturen sind wir in der Lage tragfähige Ansätze für neue Therapiestrategien zu finden“, sagt Professor Dr. Hans-Peter Thier, Seniorautor der Studie und Vorstand am Hertie-Institut für klinische Hirnforschung (HIH) der Universität Tübingen.

Mit Hilfe der funktionellen Magnetresonanztomografie (fMRT) haben Karolina Marciniak und Dr. Peter Dicke, Forschungsgruppe Thier, im hinteren Bereich der oberen Schläfenfurche (posteriorer Sulcus temporalis superior) die kleine umschriebene Blickfolgeregion (gaze following patch) bei Rhesusaffen entdeckt. Der „gaze following patch“ befindet sich in der Nähe von sechs miteinander verbundenen Regionen zur Gesichtserkennung (face patch-System), die aktiv sind, sobald das der Affe ein Gesicht sieht. Mussten die Tiere jedoch den Blick des Anderen verfolgen und gemeinsame Aufmerksamkeit etablieren, war nur die Blickfolgeregion aktiv.

„Wir nehmen deshalb an, dass das die Region im Gehirn ist, die aus der Vielzahl komplexer Informationen – unter anderem über Gesichter – die Richtung berechnet, in die wir blicken müssen, um gemeinsame Aufmerksamkeit zu etablieren“, sagt Karolina Marciniak, Hirnforscherin am Hertie-Institut für klinische Hirnforschung der Universität Tübingen. „Den Blick zu lesen und gemeinsame Aufmerksamkeit zu etablieren ist eine Fähigkeit, die wir Menschen mit anderen Primaten teilen, weshalb Affen sich als optimale Modelle für die Analyse der neuronalen Grundlagen der interessierenden Leistungen eignen“, erläutert Thier.

Menschen orientieren sich meist an der Augenposition ihrer Mitmenschen, wenn es darum geht eine Blickrichtung zu bestimmen. Nichthumane Primaten, wie zum Beispiel Rhesusaffen, verlassen sich stattdessen auf die Ausrichtung des Gesichts. „Trotz dieses Unterschieds dürften die zugrundeliegenden neuronalen Schaltkreise sehr ähnlich sein“, sagt Dr. Peter Dicke. Hierfür spreche nicht zuletzt die Tatsache, dass die Arbeitsgruppe in früheren fMRT-Untersuchungen an Menschen eine Blickfolgeregion nachweisen konnte, die mit Blick auf ihre Lage der von Rhesusaffen entspreche.

Professor Thier ergänzt: „Schädigungen dieser Region beim Menschen durch Schlaganfälle beinträchtigen die Fähigkeit zur Blickfolge. Mit der Identifizierung des Substrates der Blickfolge im Schläfenlappen von Rhesusaffen und ihrer Beziehung zum System der „face patches“ sind erstmals die Voraussetzung dafür geschaffen, die Nervenzelloperationen analysieren zu können, die Blickfolge und gemeinsame Aufmerksamkeit ermöglichen.“

Messung von Nervenzellaktivität mittels fMRT
Die funktionelle Magnetresonanztomografie fMRT erfasst die Aktivität von Nervenzellen indirekt, indem sie Änderungen Sauerstoffgehaltes der roten Blutkörperchen misst. Experten sprechen dann von einem BOLD-Effekt. Dieser wird durch den Energiebedarf aktiver Nervenzellen hervorgerufen. Je stärker der Änderungen des Sauerstoffgehaltes, desto höher die jeweilige neuronale Aktivität.

Originaltitel der Publikation
Disparate substrates for head gaze following and face perception in the monkey superior temporal sulcus; Marciniak et al. eLife 2014;3:e03222. DOI: 10.7554/eLife.03222; http://elifesciences.org/content/3/e03222

Silke Jakobi | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hih-tuebingen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics