Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hirnforschung: Neuronale Grundlagen sozialer Interaktionen weiter entschlüsselt

05.09.2014

Tübinger Hirnforschern ist es erstmals gelungen, die Region im Gehirn zu identifizieren, die es uns ermöglicht unseren Blick und damit unsere Aufmerksamkeit, vom Blick des Anderen geleitet, denselben Dingen zuzuwenden wie unser Gegenüber. Entdeckt haben die Forscher die verantwortliche Blickfolgeregion mittels funktioneller Magnetresonanztomografie (fMRT) in Experimenten an Rhesusaffen. Sie befindet sich im hinteren Bereich der oberen Schläfenfurche. Das belegt die aktuell im internationalen Fachjournal eLife erschienene Publikation.

Bisher war nicht bekannt, wie es dem Gehirn gelingt die Informationen, die es über die Augen und das Gesicht des Anderen erhält, in eine präzise Blickwendung zu „übersetzen“. Störungen dieses Verständnisses sind vermutlich eine wesentliche Ursache des Autismus.

Ein erfolgreiches soziales Miteinander erfordert ein Verständnis der Erwartungen, Wünsche und Absichten unseres Gegenübers. Ein wesentlicher Schritt dorthin ist es, die Handlungsziele des Anderen zu erfassen, die sich in der Ausrichtung seines Blickes verraten, die eigene Aufmerksamkeit diesen Zielen zuzuwenden und damit „gemeinsame Aufmerksamkeit“ (joint attention) zu etablieren.

Menschen, die unter einer eingeschränkten Fähigkeit zu sozialen Interaktionen beispielsweise infolge von Erkrankungen aus dem Formenkreis des Autismus leiden, können häufig den Blick des Anderen nicht „lesen“. Dadurch sind sie nicht in der Lage gemeinsame Aufmerksamkeit zu etablieren. Somit entsteht, so die Annahme der Experten, eine wesentliche Ursache des sozialen Defizits.

Um die Handlungsziele unseres Gegenübers zu erkennen, ist es nicht nur notwendig die Ausrichtung des Blickes und des Gesichtes zu erfassen. Wir müssen vielmehr auch Informationen über mögliche Objekte des Interesses und deren räumliche Position relativ zu Beobachter und dem Beobachtetem zur Verfügung haben. Auf der Grundlage dieser Informationen kann die erforderliche Blickwendung des Beobachters abgeleitet werden. In welcher Hirnregion das geschieht und was sie hierbei leistet war bislang gänzlich unbekannt: „Erst durch ein besseres Verständnis der beteiligten Hirnstrukturen sind wir in der Lage tragfähige Ansätze für neue Therapiestrategien zu finden“, sagt Professor Dr. Hans-Peter Thier, Seniorautor der Studie und Vorstand am Hertie-Institut für klinische Hirnforschung (HIH) der Universität Tübingen.

Mit Hilfe der funktionellen Magnetresonanztomografie (fMRT) haben Karolina Marciniak und Dr. Peter Dicke, Forschungsgruppe Thier, im hinteren Bereich der oberen Schläfenfurche (posteriorer Sulcus temporalis superior) die kleine umschriebene Blickfolgeregion (gaze following patch) bei Rhesusaffen entdeckt. Der „gaze following patch“ befindet sich in der Nähe von sechs miteinander verbundenen Regionen zur Gesichtserkennung (face patch-System), die aktiv sind, sobald das der Affe ein Gesicht sieht. Mussten die Tiere jedoch den Blick des Anderen verfolgen und gemeinsame Aufmerksamkeit etablieren, war nur die Blickfolgeregion aktiv.

„Wir nehmen deshalb an, dass das die Region im Gehirn ist, die aus der Vielzahl komplexer Informationen – unter anderem über Gesichter – die Richtung berechnet, in die wir blicken müssen, um gemeinsame Aufmerksamkeit zu etablieren“, sagt Karolina Marciniak, Hirnforscherin am Hertie-Institut für klinische Hirnforschung der Universität Tübingen. „Den Blick zu lesen und gemeinsame Aufmerksamkeit zu etablieren ist eine Fähigkeit, die wir Menschen mit anderen Primaten teilen, weshalb Affen sich als optimale Modelle für die Analyse der neuronalen Grundlagen der interessierenden Leistungen eignen“, erläutert Thier.

Menschen orientieren sich meist an der Augenposition ihrer Mitmenschen, wenn es darum geht eine Blickrichtung zu bestimmen. Nichthumane Primaten, wie zum Beispiel Rhesusaffen, verlassen sich stattdessen auf die Ausrichtung des Gesichts. „Trotz dieses Unterschieds dürften die zugrundeliegenden neuronalen Schaltkreise sehr ähnlich sein“, sagt Dr. Peter Dicke. Hierfür spreche nicht zuletzt die Tatsache, dass die Arbeitsgruppe in früheren fMRT-Untersuchungen an Menschen eine Blickfolgeregion nachweisen konnte, die mit Blick auf ihre Lage der von Rhesusaffen entspreche.

Professor Thier ergänzt: „Schädigungen dieser Region beim Menschen durch Schlaganfälle beinträchtigen die Fähigkeit zur Blickfolge. Mit der Identifizierung des Substrates der Blickfolge im Schläfenlappen von Rhesusaffen und ihrer Beziehung zum System der „face patches“ sind erstmals die Voraussetzung dafür geschaffen, die Nervenzelloperationen analysieren zu können, die Blickfolge und gemeinsame Aufmerksamkeit ermöglichen.“

Messung von Nervenzellaktivität mittels fMRT
Die funktionelle Magnetresonanztomografie fMRT erfasst die Aktivität von Nervenzellen indirekt, indem sie Änderungen Sauerstoffgehaltes der roten Blutkörperchen misst. Experten sprechen dann von einem BOLD-Effekt. Dieser wird durch den Energiebedarf aktiver Nervenzellen hervorgerufen. Je stärker der Änderungen des Sauerstoffgehaltes, desto höher die jeweilige neuronale Aktivität.

Originaltitel der Publikation
Disparate substrates for head gaze following and face perception in the monkey superior temporal sulcus; Marciniak et al. eLife 2014;3:e03222. DOI: 10.7554/eLife.03222; http://elifesciences.org/content/3/e03222

Silke Jakobi | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hih-tuebingen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Mit 3D-Zellkulturen gegen Krebsresistenzen
11.12.2017 | Universität Bern

nachricht Kommunikation ist alles – auch im Immunsystem
28.11.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit