Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was hindert Stammzellen am Erwachsenwerden?

09.11.2009
Charité-Forscher entschlüsseln Regulationsmechanismus

Wissenschaftler der Charité - Universitätsmedizin Berlin und des Helmholtz Zentrums München haben jetzt gemeinsam einen Mechanismus entschlüsselt, der eine entscheidende Rolle bei der Reifung von Stammzellen einnimmt. Über die Wechselwirkung zwischen dem bisher wenig erforschten Stammzellgen Lin-41 und der MicroRNA namens let-7 berichtet das Forscherteam um Dr. F. Gregory Wulczyn, Institut für Zell- und Neurobiologie, im Fachjournal Nature Cell Biology*.

Aus Stammzellen entwickeln sich spezialisierte Körperzellen, wie zum Beispiel Neuronen oder Herzmuskelzellen. Wie dieser Reifungsprozess genau funktioniert, ist im Detail noch nicht geklärt. Aber die gezielte Einsetzung von Stammzellen zur Reparatur von erkranktem Gewebe ist ein Hauptziel der regenerativen Medizin.

Den beiden Forschergruppen ist es jetzt am Mausmodell gelungen, die molekulare Funktion des Stammzellgens Lin-41 aufzuklären. Wie alle Zellen besitzen Stammzellen die Fähigkeit, zelluläre Proteine abzubauen. Lin-41 lenkt die Abbauenzyme auf ein zelluläres Protein, Ago2, und leitet dadurch seine Zerstörung ein. Bei der Stammzellreifung wird Ago2 benötigt, um die Aktivität von let-7 und anderen MicroRNAs zu gewährleisten. Da MicroRNAs für die Umwandlung von Stammzellen zu spezialisierten Zellen mitverantwortlich sind, bremst die Zerstörung von Ago2 durch Lin-41 die Zellumwandlung. Um die Stammzellreifung in Gang zu setzen, spielt die MicroRNA let-7 eine entscheidende Rolle. Let-7 besitzt die Fähigkeit das Gen Lin-41 zu hemmen, das zelluläre Protein Ago2 ist dann vor dem Abbau geschützt. "Somit können Stammzellen zwei unterschiedliche Zustände aufweisen. Junge, unreife Stammzellen haben viel Lin-41, wenig Ago2 und inaktivierte MicroRNAs. Heranreifende Stammzellen haben wenig Lin-41, viel Ago2 und aktivierte MicroRNAs", erklärt Dr. Wulczyn.

"Wir zeigen eine neue Art des Zusammenspiels zwischen MicroRNAs und Proteinabbau in Stammzellen. Dadurch kann die Aktivität vieler zellulärer Proteine gezielt koordiniert werden", sagt Dr. Daniel Krappmann, Leiter der Münchener Arbeitsgruppe. Die neuen Erkenntnisse könnten auch medizinisch relevant sein, weil Störungen in diesem Gen-Netzwerk sowohl Entwicklungsstörungen als auch Krebsentstehung begünstigen könnten. "Es ist bekannt, dass der Verlust von let-7 in verschiedenen Geweben die Krebsentstehung fördern kann. Unsere Daten deuten auf eine Mitbeteiligung von Lin-41 hin", fügt Dr. Wulczyn hinzu.

*Agnieszka Rybak, Heiko Fuchs, Kamyar Hadian, Lena Smirnova, Ellery A. Wulczyn, Geert Michel, Robert Nitsch, Daniel Krappmann & F. Gregory Wulczyn: The let 7 target gene mouse lin 41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. In: Nature Cell Biology. doi:10.1038/ncb1987

Kontakt
Dr. F. Gregory Wulczyn
Institut für Zell- und Neurobiologie
Charité Campus Mitte
Charité - Universitätsmedizin Berlin
t: +49 30 450 528 459

Kerstin Endele | idw
Weitere Informationen:
http://www.nature.com/ncb/journal/vaop/ncurrent/abs/ncb1987.html

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

nachricht Spezialisten-Zellen helfen Gedächtnis auf die Sprünge
17.03.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie