Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herzinfarkt - Botschaft blockiert

10.12.2015

LMU-Forschern ist es gelungen, die Ansammlung von Monozyten an einer Entzündungsstelle zu stoppen. Dafür haben sie im Labor ein Peptid entwickelt, das einen entscheidenden chemischen Signalweg stört.

Monozyten spielen eine wesentliche Rolle bei der Immunabwehr. Die weißen Blutkörperchen können aber auch zur Gefahr für den eigenen Körper werden, wenn sie sich in großen Mengen an der inneren Gefäßwand ansammeln und dadurch Entzündungen auslösen.


Gezeigt ist die Bindung von SKY Peptid an CCL5 (grün). Diese Bindung verhindert das Andocken von HNP1 und somit die Funktion des HNP1-CCL5 Heteromers. Die Monozyten können somit nirgendwo andocken und wandern in der Blutbahn weiter.

Forscher um Professor Oliver Söhnlein vom Institut für Prophylaxe und Epidemiologie der Kreislauferkrankungen (IPEK) der LMU ist es gelungen, die Ansammlung von Monozyten in entzündeten Geweben zu stoppen. Über ihre Ergebnisse berichten sie aktuell in der Fachzeitschrift Science Translational Medicine.

Verschiedene chemische Signalwege sorgen dafür, dass die Monozyten an der Gefäßwand anheften und schließlich in diese eindringen. Die Forscher um Oliver Söhnlein haben untersucht, in welcher Weise Neutrophile, die häufigsten weißen Blutkörperchen, und Blutplättchen bei der Aktivierung von Monozyten kooperieren.

„Beide haben in ihren Zellkörpern Vesikel mit Proteinen, die sie freisetzen können, sobald sie am Gewebe kleben“, sagt Söhnlein. Die Proteine formen zusammen Heteromere, die als Andockstation für die Monozyten fungieren und ihnen überhaupt erst ermöglichen, an der Gefäßinnenwand zu haften.

Fatale Signale

„Diese Heteromere eignen sich als therapeutisches Angriffsziel. Wenn sich ihre Bildung verhindern lässt, fehlt der Signalweg, durch den die Monozyten sonst an die Gefäßinnenwand binden“, sagt Oliver Söhnlein. Um diesen Prozess zu unterbinden, haben die Forscher die Interaktion von Proteinen aus Neutrophilen und Plättchen genauer analysiert. Auf Basis einer Strukturanalyse der von ihnen freigesetzten Proteine, haben sie ein eigenes Molekül entwickelt, das SKY-Peptid.

„Es ist HNP1, einem Protein, das von den Neutrophilen freigesetzt wird, strukturell sehr ähnlich“, sagt Söhnlein. Mithilfe des SKY-Peptids lässt sich die Interaktion stören: Das SKY-Peptid bindet an das Protein CCL5, das von den Plättchen freigesetzt wird. Ohne die Interaktion von HNP1 und CCL5 können sich keine Heteromere bilden. Die Monozyten können somit nirgendwo andocken und wandern in der Blutbahn weiter.

„Das Peptid SKY hat das höchstmögliche Potenzial, die Interaktion zwischen CCL5 und HNP1 zu stören“, sagt Söhnlein. Dabei stört SKY nicht die grundsätzliche Funktion der beiden Botenstoffe, sondern verhindert nur die Bildung von Heteromeren. „Die reguläre Immunantwort wird durch SKY also nicht beeinträchtig“, sagt Söhnlein, der inzwischen das SKY-Peptid zum Patent angemeldet hat.

Die IPEK-Forscher haben die Interaktion von Neutrophilen und Plättchen in der aktuellen Studie am Beispiel eines Herzinfarkts untersucht. „Doch dieser grundsätzliche Mechanismus ist immer dann relevant, wenn Neutrophile und Plättchen parallel aktiviert werden. Wir gehen davon aus, dass er sich auf verschiedene Erkrankungen übertragen lässt“, sagt Söhnlein. In ihrer Studie haben die Forscher nur die Interaktion der Signalproteine CCL5 und HNP1 untersucht.

„Es ist nicht ausgeschlossen, dass auch andere Signalbotenstoffe miteinander interagieren und bestimmte Wirkungen hervorrufen. Unter anderen Bedingungen könnten auch andere Heteromere relevant sein.“ Um einen möglichen therapeutischen Nutzen ihres Ansatzes zu überprüfen, sind daher weitere Untersuchungen notwendig. „Unsere Ergebnisse weisen auf jeden Fall darauf hin, dass die gezielte Störung ausgewählter Signalwege ein therapeutischer Ansatzpunkt sein könnte“, sagt Oliver Söhnlein.

Publikation:
J.-E. Alard, A. Ortega-Gomez, K. Wichapong, D. Bongiovanni, M. Horckmans, R.T.A. Megens, G. Leoni, B. Ferraro, J. Rossaint, N. Paulin, J. Ng, H. Ippel, D. Suylen, R. Hinkel, X. Blanchet, F. Gaillard, M. D’Amico, P. von Hundelshausen, A. Zarbock, C. Scheiermann, T.M. Hackeng, S. Steffens, C. Kupatt, G.A.F. Nicolaes, C. Weber, O. Soehnlein
„Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5“
In: Science Translational Medicine 2015
http://stm.sciencemag.org/content/7/317/317ra196

Kontakt:
Univ.-Prof. Dr. Dr. med. Oliver Söhnlein
Vaskuläre Immuntherapie
Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten
Poliklinik, Klinikum der Universität München
Ludwig-Maximilians-Universität München
Tel.: +49 (0)89/4400-54677
E-Mail: oliver.soehnlein@med.uni-muenchen

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Therapieansätze bei RET-Fusion - Zwei neue Inhibitoren gegen Treibermutation
26.06.2017 | Uniklinik Köln

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie