Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Heilung von Schlaganfällen einen Schritt näher

14.12.2011
Der Thalamus ist die zentrale Schaltstelle im Gehirn: Mit speziell ausgebildeten Nervenzellen (Neuronen) empfängt er die Informationen aus den Sinnesorganen, verarbeitet sie und leitet sie weiter.

Forscher des Instituts für Toxikologie und Genetik (ITG) am KIT haben die für die Entwicklung dieser Neuronen verantwortlichen genetischen Faktoren Lhx2 und Lhx9 identifiziert. Die Ergebnisse tragen wesentlich zum Verständnis der Entwicklung des Thalamus bei. Langfristig sollen sie dabei helfen, nach Schlaganfällen eine Heilung zu ermöglichen.


Die Ergebnisse der Untersuchungen des Zebrafisches lassen sich auf das menschliche Gehirn übertragen (Grafik: ITG, KIT)

Mit 100 Milliarden Nervenzellen ist das Gehirn ein sehr komplexes System. „Wir wollen das entwicklungsbiologische Programm dahinter verstehen“, sagt Dr. Steffen Scholpp vom ITG. „Uns geht es darum herauszufinden, wie sich einzelne Gehirnteile entwickeln, das heißt was Vorläuferzellen dazu bringt, sich zu einem spezialisierten Verbund zusammenzuschließen.“ Scholpps Gruppe am ITG untersucht die Entwicklung des Thalamus. „Er ist das zentrale Umspannwerk im Gehirn: Alles, was wir über Augen, Ohren oder Tastsinn von der Außenwelt wahrnehmen, muss hier hindurch und wird erst dann in die Großhirnrinde geschaltet, die es weiter verarbeitet.“

Langfristig wollen die Wissenschaftler in der Lage sein, geschädigte Hirnteile mit einer Gewebsersatztherapie zu heilen. Ist beispielsweise Gewebe nach einem Schlaganfall geschädigt, gibt es bislang keine Möglichkeit, dieses neu aufzubauen. „Der Schlaganfall ist heute die häufigste Ursache für im Erwachsenenalter erworbene Behinderungen, wegen seiner zentralen Rolle sind Schädigungen im Thalamus besonders schwerwiegend“, so Steffen Scholpp.

„Wir müssen deshalb eine Strategie finden, mit der wir Stammzellen so aktivieren können, dass das geschädigte Gewebe wieder ersetzt werden kann.“ Einen wesentlichen Schritt haben die Wissenschaftlerinnen und Wissenschaftler nun gemacht: Mit Lhx2 und Lhx9 haben sie in Untersuchungen an Zebrafischen die beiden Faktoren identifiziert, welche die Entwicklung der Neuronen im Thalamus steuern. „Ohne diese Faktoren entsteht ein Thalamus, der nur undifferenzierte Nervenzellen beherbergt – das heißt, den Vorläuferzellen fehlt die für die Spezialisierung notwendige Information“, erläutert der Biologe. Die Analyse der Gehirnentwicklung im Zebrafisch erlaubt Rückschlüsse auf die Entwicklung in allen Wirbeltieren einschließlich des Menschen. Ihre Ergebnisse hat die Gruppe in der aktuellen Ausgabe der Fachzeitschrift „PLoS Biology“ veröffentlicht.

In der gleichen Studie haben Scholpp und sein Team einen weiteren Faktor identifiziert, der als „Kleber“ im Thalamus fungiert: Das Zelladhäsionsmolekül Pcdh10b sorgt dafür, dass sich der Thalamus entwickelt, ohne sich dabei mit den umliegenden Gehirnteilen zu vermischen. Fehlt dieser Faktor, bilden sich die Neuronen zwar richtig aus, finden ihren Zielbereich aber nicht mehr.

Ziel der Forscherinnen und Forscher ist es nun, diese Faktoren – zunächst in der Kulturschale (in vitro) in undifferenzierten Zellen zu aktivieren, damit sich neues Thalamusgewebe bildet. In enger Kooperation mit Ingenieuren entwickelten die Biologen bereits zweidimensionale Zellkultur-Systeme, im Januar beginnen sie mit einem 3-D-Zellkulturprojekt. „Das KIT bietet uns hier sehr gute Möglichkeiten: Parallel zu unserer Forschung arbeiten Materialwissenschaftler an der Entwicklung verschiedenster Biowerkstoffe (Biopolymere), die wir in Experimenten in der Kulturschale testen“, so Scholpp.

Für die Zukunft hält Dr. Steffen Scholpp eine Heilung von Schlaganfallpatienten für möglich. „Das wird sicher noch nicht in den nächsten Jahren so weit sein. Ziel ganz am Ende ist es aber, schlafende Stammzellen eines Schlaganfallpatienten entnehmen zu können, dann – außerhalb des Körpers – in diesen Zellen das spezifische entwicklungsbiologische Programm anzuschalten und sie schließlich wieder zurück an die Position des geschädigten Gewebes zu bringen. Das wäre dann eine echte Heilung.“

Die Deutsche Forschungsgemeinschaft (DFG) fördert Dr. Steffen Scholpp im Emmy-Noether-Programm für fünf Jahre mit 1,3 Millionen Euro. Mit diesem Programm unterstützt sie junge Wissenschaftler beim Aufbau einer eigenen Arbeitsgruppe. In Dr. Steffen Scholpps Team forschen derzeit drei Doktoranden, ein Postdoktorand, eine technische Angestellte sowie zwei Masterstudierende.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Margarete Lehné
Presse, Kommunikation und
Marketing
Tel.: +49 721 608-48121
Fax: +49 721 608-43658
E-Mail: margarete.lehne@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Stoßlüften ist besser als gekippte Fenster
29.03.2017 | Technische Universität München

nachricht Dimethylfumarat – eine neue Behandlungsoption für Lymphome
28.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten