Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Heilung von Schlaganfällen einen Schritt näher

14.12.2011
Der Thalamus ist die zentrale Schaltstelle im Gehirn: Mit speziell ausgebildeten Nervenzellen (Neuronen) empfängt er die Informationen aus den Sinnesorganen, verarbeitet sie und leitet sie weiter.

Forscher des Instituts für Toxikologie und Genetik (ITG) am KIT haben die für die Entwicklung dieser Neuronen verantwortlichen genetischen Faktoren Lhx2 und Lhx9 identifiziert. Die Ergebnisse tragen wesentlich zum Verständnis der Entwicklung des Thalamus bei. Langfristig sollen sie dabei helfen, nach Schlaganfällen eine Heilung zu ermöglichen.


Die Ergebnisse der Untersuchungen des Zebrafisches lassen sich auf das menschliche Gehirn übertragen (Grafik: ITG, KIT)

Mit 100 Milliarden Nervenzellen ist das Gehirn ein sehr komplexes System. „Wir wollen das entwicklungsbiologische Programm dahinter verstehen“, sagt Dr. Steffen Scholpp vom ITG. „Uns geht es darum herauszufinden, wie sich einzelne Gehirnteile entwickeln, das heißt was Vorläuferzellen dazu bringt, sich zu einem spezialisierten Verbund zusammenzuschließen.“ Scholpps Gruppe am ITG untersucht die Entwicklung des Thalamus. „Er ist das zentrale Umspannwerk im Gehirn: Alles, was wir über Augen, Ohren oder Tastsinn von der Außenwelt wahrnehmen, muss hier hindurch und wird erst dann in die Großhirnrinde geschaltet, die es weiter verarbeitet.“

Langfristig wollen die Wissenschaftler in der Lage sein, geschädigte Hirnteile mit einer Gewebsersatztherapie zu heilen. Ist beispielsweise Gewebe nach einem Schlaganfall geschädigt, gibt es bislang keine Möglichkeit, dieses neu aufzubauen. „Der Schlaganfall ist heute die häufigste Ursache für im Erwachsenenalter erworbene Behinderungen, wegen seiner zentralen Rolle sind Schädigungen im Thalamus besonders schwerwiegend“, so Steffen Scholpp.

„Wir müssen deshalb eine Strategie finden, mit der wir Stammzellen so aktivieren können, dass das geschädigte Gewebe wieder ersetzt werden kann.“ Einen wesentlichen Schritt haben die Wissenschaftlerinnen und Wissenschaftler nun gemacht: Mit Lhx2 und Lhx9 haben sie in Untersuchungen an Zebrafischen die beiden Faktoren identifiziert, welche die Entwicklung der Neuronen im Thalamus steuern. „Ohne diese Faktoren entsteht ein Thalamus, der nur undifferenzierte Nervenzellen beherbergt – das heißt, den Vorläuferzellen fehlt die für die Spezialisierung notwendige Information“, erläutert der Biologe. Die Analyse der Gehirnentwicklung im Zebrafisch erlaubt Rückschlüsse auf die Entwicklung in allen Wirbeltieren einschließlich des Menschen. Ihre Ergebnisse hat die Gruppe in der aktuellen Ausgabe der Fachzeitschrift „PLoS Biology“ veröffentlicht.

In der gleichen Studie haben Scholpp und sein Team einen weiteren Faktor identifiziert, der als „Kleber“ im Thalamus fungiert: Das Zelladhäsionsmolekül Pcdh10b sorgt dafür, dass sich der Thalamus entwickelt, ohne sich dabei mit den umliegenden Gehirnteilen zu vermischen. Fehlt dieser Faktor, bilden sich die Neuronen zwar richtig aus, finden ihren Zielbereich aber nicht mehr.

Ziel der Forscherinnen und Forscher ist es nun, diese Faktoren – zunächst in der Kulturschale (in vitro) in undifferenzierten Zellen zu aktivieren, damit sich neues Thalamusgewebe bildet. In enger Kooperation mit Ingenieuren entwickelten die Biologen bereits zweidimensionale Zellkultur-Systeme, im Januar beginnen sie mit einem 3-D-Zellkulturprojekt. „Das KIT bietet uns hier sehr gute Möglichkeiten: Parallel zu unserer Forschung arbeiten Materialwissenschaftler an der Entwicklung verschiedenster Biowerkstoffe (Biopolymere), die wir in Experimenten in der Kulturschale testen“, so Scholpp.

Für die Zukunft hält Dr. Steffen Scholpp eine Heilung von Schlaganfallpatienten für möglich. „Das wird sicher noch nicht in den nächsten Jahren so weit sein. Ziel ganz am Ende ist es aber, schlafende Stammzellen eines Schlaganfallpatienten entnehmen zu können, dann – außerhalb des Körpers – in diesen Zellen das spezifische entwicklungsbiologische Programm anzuschalten und sie schließlich wieder zurück an die Position des geschädigten Gewebes zu bringen. Das wäre dann eine echte Heilung.“

Die Deutsche Forschungsgemeinschaft (DFG) fördert Dr. Steffen Scholpp im Emmy-Noether-Programm für fünf Jahre mit 1,3 Millionen Euro. Mit diesem Programm unterstützt sie junge Wissenschaftler beim Aufbau einer eigenen Arbeitsgruppe. In Dr. Steffen Scholpps Team forschen derzeit drei Doktoranden, ein Postdoktorand, eine technische Angestellte sowie zwei Masterstudierende.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Margarete Lehné
Presse, Kommunikation und
Marketing
Tel.: +49 721 608-48121
Fax: +49 721 608-43658
E-Mail: margarete.lehne@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik