Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Harmful effects of bisphenol A proved experimentally

22.01.2013
Weak concentrations of bisphenol A are sufficient to produce a negative reaction on the human testicle. This has just been shown experimentally for the first time by René Habert and his colleagues (UMR Cellules souches et Radiations [UMR Stem Cells and Radiation], Inserm U 967 – CEA – Paris Diderot University) in an article that appeared in the journal entitled Plos One.

Bisphenol A (BPA) is a chemical compound that is included in the composition of plastics and resins. It is used, for example, in the manufacture of food containers such as bottles and babies’ feeding bottles. It is also found in the protective films used inside food and drink cans and on till receipts where it used as a discloser.

Significant levels of BPA have also been found in human blood, urine, amniotic fluid and placentas. Recent studies have shown that this industrial component has harmful effects on reproductive ability, development and the metabolism of laboratory animals. BPA is strongly suspected of having the same effects on humans.

As a precautionary measure, the manufacture and sale of babies’ feeding bottles containing bisphenol A have been banned in Europe since January 2011. This ban will be extended in France to all food containers from July 2015. It will also be important to ensure that in the future, bisphenol A is not replaced by substitutes that have the same action.

In an article published in Plos One, René Habert and his colleagues provide the first experimental proof that weak concentrations of bisphenol A are sufficient to produce a negative reaction on the human testicle.

No experimental study has shown hitherto that bisphenol A has a deleterious effect on male human reproduction and the few epidemiological studies that exist remain contradictory.

In collaboration with the Antoine-Béclère Hospital, Clamart1, researchers kept petri dishes of human fœtal testicles alive in the presence of bisphenol A or in the absence thereof, using an original procedure developed by this team. In 2009, this procedure made it possible to show for the first time, that phtalates (a different category of endocrine disruptors2 that are found in PVC, plastics, synthetic materials, sprays, etc.) inhibit the development of future spermatozoa in the human fœtus.

In this new study, researchers observed that exposure of human fœtal testicles to bisphenol A reduces the production of testosterone, and of another testicular hormone that is necessary for the testicles to descend into the sacs in the course of fœtal development. A concentration equal to 2 micrograms per litre of bisphenol A in the culture medium was sufficient to produce these effects. This concentration is equal to the average concentration generally found in the blood, urine and amniotic fluid of the population.

Testosterone is known to be produced by the testicle during the life of the fœtus, imposing masculinisation of the internal and external genitals which, in the absence of testosterone, develops spontaneously in the female direction. Furthermore, it is likely that testosterone also plays a role in the development of the testicle itself. Consequently, the current exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects (of the hypospadia and cryptorchidism types) the frequency of which has doubled overall in the past 40 years. According to René Habert, “it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades”.

Furthermore, researchers have compared the response to bisphenol A in human fœtal testicles to those in the fœtal testicles of rats and mice. “We have observed that the human species is far more sensitive to bisphenol A than the rat and the mouse. These results should encourage greater caution in regulatory toxicology in the extrapolation of data obtained on animals to define tolerable exposure thresholds in human health”, explains René Habert.

Finally, the researchers show in this article that Bisphenol A acts through a mechanism that is non-standard and that remains unknown but that it is important to identify in order to better understand the action of endocrine disruptors.

Press Office | EurekAlert!
Further information:
http://www.inserm.fr
http://presse-inserm.fr/en/leffet-nefaste-du-bisphenol-a-prouve-experimentalement/6170/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften