Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Handmotorik: Neurowissenschaftler modulieren Motornetzwerk im menschlichen Gehirn

14.12.2012
Neurowissenschaftlern ist es erstmals gelungen, mittels gezielter Hirnstimulation die Verbindungen ausgewählter Areale im Gehirn, die für die Handmotorik verantwortlich sind, zu verbessern.

Die Forscher um Ulf Ziemann stimulierten den primären Motorkortex (M1), die Kommandozentrale für Bewegungsabläufe im Gehirn und das supplementär-motorische Areal (SMA).

Dieses Areal gibt den Startschuss für den Beginn einer Bewegung. Erzielt haben die Forscher dieses Resultat mit einer transkraniellen Magnetstimulation (TMS). Die gewonnenen Erkenntnisse geben den Wissenschaftlern einen tieferen Einblick in die Fähigkeit des Gehirns, gestörte Verbindungen zu reparieren.

Die Bewegungsplanung und Umsetzung erfolgt in einem komplexen System aus unterschiedlichen Hirnarealen. Sie sind als Motornetzwerke zusammengeschlossen. Der primäre Motorkortex (M1) ist für die Realisierung der Bewegung verantwortlich und nimmt Einfluss auf die Bewegungsrichtung und die Kontraktionskraft. Eine Schlüsselrolle bei der Initiierung von Handbewegungen hat das supplementär-motorische Areal (SMA). „Je komplexer selbstinitiierte Bewegungen sind, desto früher und stärker ist das supplementär-motorische Areal beteiligt“, sagt Ulf Ziemann, Vorstand Hertie-Institut für klinische Hirnforschung (HIH) und Ärztlicher Direktor, Allgemeine Neurologie, Neurologische Universitätsklinik Tübingen.

Flexibles Gehirn lernt lebenslang

Die Fähigkeit des Nervensystem zu lernen, zeigt sich auf allen Organisationsebenen des Gehirns: in der Nervenzelle, innerhalb von Nervenzellverbänden, innerhalb einzelner Hirnareale und zwischen miteinander verbundenen Hirnregionen. Das Patienten nach einer Hirnschädigung bestimmte Bewegungen wieder erlernen können, liegt an dieser sogenannten Plastizität. „Diese Fähigkeit wollen wir vor allem bei Schlaganfall-Patienten gezielt aktivieren. Sie leiden in vielen Fällen an einer leichten oder unvollständigen Lähmung einer Hand. Wir haben deshalb gezielt, vorerst am gesunden Probanden, die miteinander verbundenen Hirnregionen stimuliert, die für die Bewegung der Hand verantwortlich sind“, erläutert Ziemann die Beweggründe für die Studie.

Gezielte elektrische Impulse für das Gehirn

Die transkranielle Magnetstimulation (TMS) funktioniert nach dem physikalischen Prinzip der elektromagnetischen Induktion. Durch eine auf den Kopf aufgelegte Reizspule fließt ein kurzer Strompuls, der ein Magnetfeld um die Spule herum induziert. Dieses Magnetfeld wiederum induziert in einem weiteren Konduktor, in diesem Fall der Großhirnrinde, auch Kortex genannt, einen Stromfluss. Dieser führt zur Erregung von Nervenfasern und schließlich Nervenzellverbänden. In der aktuellen Studie verwendeten die Neurowissenschaftler eine gepaarte assoziative Stimulation, kurz PAS. Dieses nicht-invasive Hirnstimulationsprotokoll ermöglicht es, die Funktion des motorischen Systems gezielt zu beeinflussen.

„Wir wissen, aus Ergebnissen der Grundlagenforschung und aus Tierexperimenten, dass eine räumlich und zeitlich verbundene assoziative Reizung eine langfristige bidirektionale Verstärkung oder Abschwächung der synaptischen Signalübertragung zwischen Nervenzellen hervorrufen kann“, sagt Ziemann. Diesen Effekt nennen Neurowissenschaftler Spike-Timing Dependent Plasticity (STDP), oder zeitabhängige Plastizität. STDP ist ein wichtiges Modell für plastische Veränderungen in neuronalen Netzwerken und ein neuronaler Mechanismus für Lernen und adaptive Prozesse im Gehirn. Diese Erkenntnisse haben wir genutzt, um erstmals eine TMS-induzierte STDP-ähnliche Plastizität auf der Systemebene eines kortikalen Netzwerks zu induzieren, so der Experte weiter. Bei den gesunden Probanden äußerte sich dies in einer lang andauernden bidirektionalen Modulation der Signalübertragungswege zwischen M1 und SMA. Das belegt die im Journal of Neuroscience erschienene Studie. Welchen Einfluss diese Netzwerkmodulation auf die motorische Handfunktion hat, muss in weiteren Studien untersucht werden.

Neue Therapiekonzepte für Schlaganfall-Patienten

Bei vielen Schlaganfall-Patienten lässt sich durch konventionelles physiotherapeutisches Training keine ausreichende Verbesserung der Handmotorik erzielen. „Unser Ziel ist es, das Plastizitätspotential des Gehirns von Patienten nach Schlaganfall durch gezielte nicht-invasive Hirnstimulation intensiver zu nutzen. Vorstellbar wäre ein motorisches Training unter assoziativer TMS des SMA-M1 Netzwerkes“, sagt Ziemann. Ein physiologischer Schritt beim motorischen Lernen ist, so die Vermutung der Experten, die Bildung neuer motorischer Engramme. Also die Spur, die eine Reizweinwirkung, wie die transkranielle Magnetstimulation, als dauernde strukturelle Änderung im Gehirn hinterlässt. „Mit einer TMS-induzierten STDP-ähnlichen Plastizität, wie wir sie in unserer Studie bereits bei gesunden Probanden erzielt haben, könnte uns dies gelingen“, erläutert Ziemann den zugrunde liegenden Mechanismus einer möglichen neuen Therapie. Die Entwicklung innovativer neurorehabilitativer Therapiestrategien bei Patienten nach Schlaganfall ist von immenser Bedeutung: in Deutschland erleiden jährlich rund 250.000 Menschen einen Schlaganfall. Er ist die häufigste Ursache für eine anhaltende Behinderung.

Originaltitel der Publikation
Arai N, Müller-Dahlhaus F, Murakami T, Bliem B, Lu MK, Ugawa Y, Ziemann U. State-dependent and timing-dependent bidirectional associative plasticity in the human sma-m1 network. J Neurosci. 2011;31:15376-15383
Pressekontakt bei Rückfragen
Silke Jakobi
Leiterin Kommunikation
HIH Hertie-Institut für klinische Hirnforschung
Zentrum für Neurologie, Universitätsklinikum Tübingen
Otfried-Müller-Str. 27
72076 Tübingen
Tel. 07071/29-88800
Silke.Jakobi@medizin.uni-tuebingen.de
Das Hertie-Institut für klinische Hirnforschung (HIH) in Tübingen beschäftigt sich mit einem der faszinierendsten Forschungsfelder der Gegenwart: der Entschlüsselung des menschlichen Gehirns. Im Zentrum steht dabei die Frage, wie bestimmte Erkrankungen die Arbeitsweise dieses Organs beeinträchtigen. Vor diesem Hintergrund werden am HIH die informationstheoretischen und neuronalen Grundlagen wichtiger Hirnfunktionen wie Wahrnehmung, Gedächtnisleistung oder Lernverhalten untersucht. Unter anderem werden auch hirnorientierte Anwendungen für die Technik erforscht. Website: www.hih-tuebingen.de

Das 1805 gegründete Universitätsklinikum Tübingen (UKT) gehört zu den führenden Zentren der deutschen Hochschulmedizin und trägt als eines der 32 Universitätsklinika in Deutschland zum erfolgreichen Verbund von Hochleistungsmedizin, Forschung und Lehre bei. 2001 gründete es zusammen mit der Gemeinnützigen Hertie-Stiftung und der Eberhard Karls Universität das Hertie-Institut für klinische Hirnforschung (HIH), mit dem Ziel, die Ergebnisse der exzellenten neurowissenschaftlichen Forschung rasch in die klinische Praxis zur Behandlung neurologischer und neurodegenerativer Erkrankungen zu überführen. Website: www.medizin.uni-tuebingen.de

Silke Jakobi | HIH
Weitere Informationen:
http://www.hih-tuebingen.de
http://www.medizin.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Kokosöl verlängert Leben bei peroxisomalen Störungen
20.06.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Überdosis Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics