Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Handmotorik: Neurowissenschaftler modulieren Motornetzwerk im menschlichen Gehirn

14.12.2012
Neurowissenschaftlern ist es erstmals gelungen, mittels gezielter Hirnstimulation die Verbindungen ausgewählter Areale im Gehirn, die für die Handmotorik verantwortlich sind, zu verbessern.

Die Forscher um Ulf Ziemann stimulierten den primären Motorkortex (M1), die Kommandozentrale für Bewegungsabläufe im Gehirn und das supplementär-motorische Areal (SMA).

Dieses Areal gibt den Startschuss für den Beginn einer Bewegung. Erzielt haben die Forscher dieses Resultat mit einer transkraniellen Magnetstimulation (TMS). Die gewonnenen Erkenntnisse geben den Wissenschaftlern einen tieferen Einblick in die Fähigkeit des Gehirns, gestörte Verbindungen zu reparieren.

Die Bewegungsplanung und Umsetzung erfolgt in einem komplexen System aus unterschiedlichen Hirnarealen. Sie sind als Motornetzwerke zusammengeschlossen. Der primäre Motorkortex (M1) ist für die Realisierung der Bewegung verantwortlich und nimmt Einfluss auf die Bewegungsrichtung und die Kontraktionskraft. Eine Schlüsselrolle bei der Initiierung von Handbewegungen hat das supplementär-motorische Areal (SMA). „Je komplexer selbstinitiierte Bewegungen sind, desto früher und stärker ist das supplementär-motorische Areal beteiligt“, sagt Ulf Ziemann, Vorstand Hertie-Institut für klinische Hirnforschung (HIH) und Ärztlicher Direktor, Allgemeine Neurologie, Neurologische Universitätsklinik Tübingen.

Flexibles Gehirn lernt lebenslang

Die Fähigkeit des Nervensystem zu lernen, zeigt sich auf allen Organisationsebenen des Gehirns: in der Nervenzelle, innerhalb von Nervenzellverbänden, innerhalb einzelner Hirnareale und zwischen miteinander verbundenen Hirnregionen. Das Patienten nach einer Hirnschädigung bestimmte Bewegungen wieder erlernen können, liegt an dieser sogenannten Plastizität. „Diese Fähigkeit wollen wir vor allem bei Schlaganfall-Patienten gezielt aktivieren. Sie leiden in vielen Fällen an einer leichten oder unvollständigen Lähmung einer Hand. Wir haben deshalb gezielt, vorerst am gesunden Probanden, die miteinander verbundenen Hirnregionen stimuliert, die für die Bewegung der Hand verantwortlich sind“, erläutert Ziemann die Beweggründe für die Studie.

Gezielte elektrische Impulse für das Gehirn

Die transkranielle Magnetstimulation (TMS) funktioniert nach dem physikalischen Prinzip der elektromagnetischen Induktion. Durch eine auf den Kopf aufgelegte Reizspule fließt ein kurzer Strompuls, der ein Magnetfeld um die Spule herum induziert. Dieses Magnetfeld wiederum induziert in einem weiteren Konduktor, in diesem Fall der Großhirnrinde, auch Kortex genannt, einen Stromfluss. Dieser führt zur Erregung von Nervenfasern und schließlich Nervenzellverbänden. In der aktuellen Studie verwendeten die Neurowissenschaftler eine gepaarte assoziative Stimulation, kurz PAS. Dieses nicht-invasive Hirnstimulationsprotokoll ermöglicht es, die Funktion des motorischen Systems gezielt zu beeinflussen.

„Wir wissen, aus Ergebnissen der Grundlagenforschung und aus Tierexperimenten, dass eine räumlich und zeitlich verbundene assoziative Reizung eine langfristige bidirektionale Verstärkung oder Abschwächung der synaptischen Signalübertragung zwischen Nervenzellen hervorrufen kann“, sagt Ziemann. Diesen Effekt nennen Neurowissenschaftler Spike-Timing Dependent Plasticity (STDP), oder zeitabhängige Plastizität. STDP ist ein wichtiges Modell für plastische Veränderungen in neuronalen Netzwerken und ein neuronaler Mechanismus für Lernen und adaptive Prozesse im Gehirn. Diese Erkenntnisse haben wir genutzt, um erstmals eine TMS-induzierte STDP-ähnliche Plastizität auf der Systemebene eines kortikalen Netzwerks zu induzieren, so der Experte weiter. Bei den gesunden Probanden äußerte sich dies in einer lang andauernden bidirektionalen Modulation der Signalübertragungswege zwischen M1 und SMA. Das belegt die im Journal of Neuroscience erschienene Studie. Welchen Einfluss diese Netzwerkmodulation auf die motorische Handfunktion hat, muss in weiteren Studien untersucht werden.

Neue Therapiekonzepte für Schlaganfall-Patienten

Bei vielen Schlaganfall-Patienten lässt sich durch konventionelles physiotherapeutisches Training keine ausreichende Verbesserung der Handmotorik erzielen. „Unser Ziel ist es, das Plastizitätspotential des Gehirns von Patienten nach Schlaganfall durch gezielte nicht-invasive Hirnstimulation intensiver zu nutzen. Vorstellbar wäre ein motorisches Training unter assoziativer TMS des SMA-M1 Netzwerkes“, sagt Ziemann. Ein physiologischer Schritt beim motorischen Lernen ist, so die Vermutung der Experten, die Bildung neuer motorischer Engramme. Also die Spur, die eine Reizweinwirkung, wie die transkranielle Magnetstimulation, als dauernde strukturelle Änderung im Gehirn hinterlässt. „Mit einer TMS-induzierten STDP-ähnlichen Plastizität, wie wir sie in unserer Studie bereits bei gesunden Probanden erzielt haben, könnte uns dies gelingen“, erläutert Ziemann den zugrunde liegenden Mechanismus einer möglichen neuen Therapie. Die Entwicklung innovativer neurorehabilitativer Therapiestrategien bei Patienten nach Schlaganfall ist von immenser Bedeutung: in Deutschland erleiden jährlich rund 250.000 Menschen einen Schlaganfall. Er ist die häufigste Ursache für eine anhaltende Behinderung.

Originaltitel der Publikation
Arai N, Müller-Dahlhaus F, Murakami T, Bliem B, Lu MK, Ugawa Y, Ziemann U. State-dependent and timing-dependent bidirectional associative plasticity in the human sma-m1 network. J Neurosci. 2011;31:15376-15383
Pressekontakt bei Rückfragen
Silke Jakobi
Leiterin Kommunikation
HIH Hertie-Institut für klinische Hirnforschung
Zentrum für Neurologie, Universitätsklinikum Tübingen
Otfried-Müller-Str. 27
72076 Tübingen
Tel. 07071/29-88800
Silke.Jakobi@medizin.uni-tuebingen.de
Das Hertie-Institut für klinische Hirnforschung (HIH) in Tübingen beschäftigt sich mit einem der faszinierendsten Forschungsfelder der Gegenwart: der Entschlüsselung des menschlichen Gehirns. Im Zentrum steht dabei die Frage, wie bestimmte Erkrankungen die Arbeitsweise dieses Organs beeinträchtigen. Vor diesem Hintergrund werden am HIH die informationstheoretischen und neuronalen Grundlagen wichtiger Hirnfunktionen wie Wahrnehmung, Gedächtnisleistung oder Lernverhalten untersucht. Unter anderem werden auch hirnorientierte Anwendungen für die Technik erforscht. Website: www.hih-tuebingen.de

Das 1805 gegründete Universitätsklinikum Tübingen (UKT) gehört zu den führenden Zentren der deutschen Hochschulmedizin und trägt als eines der 32 Universitätsklinika in Deutschland zum erfolgreichen Verbund von Hochleistungsmedizin, Forschung und Lehre bei. 2001 gründete es zusammen mit der Gemeinnützigen Hertie-Stiftung und der Eberhard Karls Universität das Hertie-Institut für klinische Hirnforschung (HIH), mit dem Ziel, die Ergebnisse der exzellenten neurowissenschaftlichen Forschung rasch in die klinische Praxis zur Behandlung neurologischer und neurodegenerativer Erkrankungen zu überführen. Website: www.medizin.uni-tuebingen.de

Silke Jakobi | HIH
Weitere Informationen:
http://www.hih-tuebingen.de
http://www.medizin.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Therapieansätze bei RET-Fusion - Zwei neue Inhibitoren gegen Treibermutation
26.06.2017 | Uniklinik Köln

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ultra-sensitiv dank quantenmechanischer Verschränkung

28.06.2017 | Physik Astronomie

Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an

28.06.2017 | Biowissenschaften Chemie

Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie

28.06.2017 | Förderungen Preise