Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf gute Nachbarschaft

30.04.2013
Freiburger Physiologen zeigen, warum sich Ionenkanäle in Zellmembranen von Muskeln oder Nerven schnell öffnen

Ionenkanäle sind an der Übertragung von Signalen zwischen und innerhalb von Zellen beteiligt. Ohne diese Proteine könnten Zellen nicht kommunizieren. Die Kanäle sitzen in der Zellmembran und leiten elektrisch geladene Teilchen, wenn ein Reiz zuvor die Proteinstruktur verändert und den Kanal auf diese Weise öffnet.


Strukturmodell eines Proteinsuperkomplexes mit BK-Kanälen und Kalzium-Kanälen (Cav)
© Burkhard Ramner/scimotion

Nur wenige Kanäle können auf mehrere Reize reagieren, zum Beispiel der spannungs- und kalziumgesteuerte BK-Kanal. Prof. Dr. Bernd Fakler, Physiologisches Institut der Universität Freiburg sowie BIOSS Center for Biological Signalling Studies, und Dr. Henrike Berkefeld vom Physiologischen Institut konnten zeigen, unter welchen Bedingungen sich BK-Kanäle in Nerven- oder Muskelzellen öffnen. Das Forscherteam klärte die Frage, ob die Ionenkanäle Spannung und Kalzium zugleich nutzen oder nur einen dieser beiden Reize.

Die Untersuchung beweist, dass BK-Kanäle unter den in einer Zelle gegebenen Bedingungen im Wesentlichen durch Kalzium gesteuert werden und dass sich ihre Leistung durch benachbarte Kalzium-Kanäle steigern lässt. Die Forschungsergebnisse sind nun in der Fachzeitschrift „Journal of Neuroscience“ erschienen.

Ein Proteinsuperkomplex ist ein Verbund mehrerer Proteine und kann BK-Kanäle und spannungsgesteuerte Kalzium-Kanäle vereinen. Sie gehen eine Art Symbiose ein: Eine direkte chemische Wechselwirkung führt dazu, dass beide Kanalproteine in einem solchen Komplex eingebaut sind. Wenn sich die Spannung über der Membran ändert, öffnen sich zunächst nur die Kalzium-Kanäle, wie Fakler und Berkefeld herausfanden. Dadurch strömen Kalziumionen in die Zelle, die dann wiederum an BK-Kanäle binden und diese öffnen. Die Kalziumteilchen üben die Funktion eines Liganden aus, das heißt sie binden an das Protein und aktivieren es. Da die Spannung die BK-Kanäle nicht direkt beeinflusst, arbeiten sie unter natürlichen Bedingungen als rein ligandengesteuerte Ionenkanäle.

In Protein-Komplexen mit Kalziumkanälen schalten BK-Kanäle außerdem deutlich schneller als ohne diesen Partner in ihrer Nachbarschaft. Wenn ein BK-Kanal allein dem Reiz Kalzium ausgesetzt wird, kommt es zu einer zeitlichen Verzögerung, bevor die Kanäle sich öffnen. Eine solche Verzögerung wäre für die Signalübertragung in Nerven nachteilig oder sogar schädlich. Wie Fakler und Berkefeld gezeigt haben, bedienen die Kalzium-Kanäle ihre BK-Partner in doppelter Hinsicht: Sie liefern ihnen den aktivierenden Liganden und beschleunigen dessen Wirkung.

Kontakt:
Prof. Dr. Bernd Fakler
Institut für Physiologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5175
E-Mail: bernd.fakler@physiologie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de

Weitere Berichte zu: BK-Kanal BK-Kanäle Ionenkanal Kalzium Kalzium-Kanäle Kanal Protein Reiz Verzögerung Zelle Zellmembran

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Sicher und gesund arbeiten mit Datenbrillen
13.01.2017 | Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

nachricht Vorhersage entlastet das Gehirn
13.01.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik