Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grundlagenforscher entdecken Bildungsmechanismen zerstörerischer Sauerstoffverbindungen im Blut

30.07.2009
Einer Forschergruppe im Institut für Medizinische Mikrobiologie, Immunologie und Hygiene der Uniklinik Köln ist es mit CECAD Cologne (Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases) und Kieler Wissenschaftlern gelungen, aufzuklären, wie die Bildung von reaktiven Sauerstoffverbindungen (ROS - reactive oxygen species) im Blut durch das Enzym NADPH-Oxidase bei Entzündungsreaktionen aktiviert wird.

ROS in zu großer Zahl führen zu oxidativem Stress, denn sie verbrennen (oxidieren) DNA, Lipide und Proteine, die Grundbausteine der Zellen. Leiter der Kölner Forschungsgruppe ist Prof. Martin Krönke, Leiter des Instituts Medizinische Mikrobiologie, Uniklinik Köln.

Deshalb verstehen Wissenschaftler heute oxidativen Stress vornehmlich als äußerst schädlichen Faktor. Die Reaktion der ROS (auch Sauerstoffradikale genannt) mit der Erbsubstanz DNA wird mit der Entstehung von Krebs in Zusammenhang gebracht, die Oxidation von Lipoproteinen (diese transportieren wasserunlösliche Fette, wie zum Beispiel Cholesterin, im Blut) mit der Entstehung von Atherosklerose.

ROS entstehen als unvermeidliches Nebenprodukt der Atmungskette während der Energiegewinnung in den "Energiekraftwerken" der Zellen, den Mitochondrien. Besonders viele Mitochondrien finden sich in Zellen mit hohem Energieverbrauch (zum Beispiel Muskel-, Nerven- und Sinneszellen). Eine defekte Mitochondrienfunktion mit stetiger Freisetzung von ROS wird als treibender Motor für degenerative Prozesse und der Zellalterung angesehen.

Die Fähigkeit zur Bildung von ROS hat jedoch nicht nur schädigende Wirkungen für unseren Organismus, im Gegenteil: Bei Infektionen mit mikrobiellen Erregern bilden zwei Arten der weißen Blutkörperchen, die Granulozyten und die Makrophagen, große Mengen Sauerstoffradikale. Hier haben sie die wichtige Funktion, die mikrobiellen Eindringlinge zu zerstören und so die Immunabwehr zu unterstützen.

Die Bedeutung der ROS-Bildung für die immunologische Abwehr wird am Beispiel der seltenen Erbkrankheit chronische Granulomatose deutlich: Bei dieser Krankheit ist die Funktion der Granulozyten und Makrophagen gestört. Diese auch als Fresszellen bezeichneten weißen Blutkörperchen können ihren Beitrag zur Immunabwehr nicht erfüllen. Krankheitserreger, speziell pathogene Bakterien und Pilze, breiten sich ohne ständige medikamentöse Behandlung daher weitgehend ungehindert im Körper der Betroffenen aus. Bei der chronischen Granulomatose ist das Enzym NADPH-Oxidase als Hautproduzent von ROS defekt und die Patienten leiden an einer erheblichen Abwehrschwäche bei mikrobiellen Infektionen da sie zuwenig ROS dafür bilden.

ROS sind also wichtig, haben aber bei der Abwehr von mikrobiellen Erregern einen hohen Preis. Durch die exzessive ROS-Produktion von Immunzellen werden nicht nur die Erreger eliminiert, die hierbei gebildeten ROS richten auch einen Kollateralschaden an: Unvermeidbare Entzündungen. Bei den meisten Infektionen sind nicht die toxischen Eigenschaften des Erregers selbst, sondern vielmehr die reaktive ROS-Bildung und die Entzündungsreaktion unseres eigenen Immunsystems in Folge die klinisch bestimmenden Faktoren für Symptomatik und Krankheitsverlauf.

Diese Vorgänge sind nun von den Kölner und Kieler Forschern entschlüsselt worden. Eine entscheidende Rolle spielt das Enzym Riboflavinkinase.

Nach Andocken des Entzündungsfaktors und immunologischen Botenstoffs Tumornekrosefaktor (TNF) an seine Erkennungsstruktur auf der Oberfläche von Zellen, dem TNF-Rezeptor, wird die Riboflavinkinase aktiviert und zwei weitere entscheidende Reaktionen ausgelöst:

Zum einen wird über die Riboflavinkinase der TNF-Rezeptor physisch an die NADPH-Oxidase gekoppelt und zum zweiten wird damit die durch die Riboflavinkinase katalysierte Umwandlung von Riboflavin (Vitamin B2) zu Flavinmononukleotid und Flavinadenindinukleotid (FAD) in unmittelbare Nähe der NADPH-Oxidase gebracht. Durch die Anlagerung von FAD erhöht sich die Rekationsbereitschaft der NADPH-Oxidase, wodurch Granulozyten und Makrophagen in die Lage versetzt werden, die benötigten großen Mengen von ROS für die Abwehr von Krankheitserregern freizusetzen.

Diese neuen Beobachtungen wurden nun in der renommierten Zeitschrift Nature veröffentlicht und haben über die immunologisch-infektiologischen Aspekte hinaus weiterreichende Bedeutung. Das neue Verständnis zur Regulation der NADPH-Oxidase zeigt Ansatzpunkte für die gezielte therapeutische Unterbindung überschießender ROS-Bildung. Dies könnte den Gewebsschaden einer überschießenden immunologischen Entzündungsreaktion bei Infektionskrankheiten einschränken, ohne den Nutzen, also die Elimination von Infektionserregern zu gefährden. Auch beim unbestrittenen Zusammenhang zwischen vermehrter ROS-Bildung und neurodegenerativen Krankheiten sowie dem Altern können neue Forschungen ansetzen. Bei neurodegenerativen Erkrankungen wie Morbus Parkinson und Alzheimer oder bei Artherosklerose und Alterungsprozessen könnte sich eine Unterbindung der Bildung von ROS durch NADPH-Oxidase als therapeutisch wirksam erweisen.

Versuche zur Therapie beziehungsweise zur Prophylaxe mit Radikalfängern (zum Beispiel Vitamin C) zeigten nicht den gewünschten Erfolg. Dies ist wenig erstaunlich, da Sauerstoffradikale sehr rasch und direkt mit ihren Zielstrukturen reagieren. Einmal gebildet, lassen sich ROS-bedingte Schädigungen zellulärer Moleküle durch Antioxidantien nur wenig effizient blockieren. Die gezielte Dämpfung der NADPH-Oxidase bei Immunantwort, Alterungsprozessen und neurodegenerativen Erkrankungen greift demgegenüber bereits bei der Bildung von ROS ein. Sie erscheint somit als viel versprechendes Konzept, welches die Kölner Wissenschaftler im Sonderforschungsbereich 670 "Zell-autonome Immunität" sowie im Excellence Cluster Cologne Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD) zukünftig weiter verfolgen.

Bei Rückfragen: Univ.-Prof. Dr. Martin Krönke
Institut für Medizinische Mikrobiologie, Immunologie und Hygiene
Telefon: 0221 478 32000
Telefax: 0221 478 32002
E-Mail: martin.kroenke@uk-koeln.de
Sina Vogt,
Leiterin Stabsabteilung Kommunikation Uniklinik Köln
Telefon: 0221 478- 5548
E-Mail: pressestelle@uk-koeln.de
Verantwortlich: Sina Vogt, Dr. Patrick Honecker

Sina Vogt | idw
Weitere Informationen:
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature08206.html

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen