Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Growth factor aids stem cell regeneration after radiation damage

04.02.2013
Epidermal growth factor has been found to speed the recovery of blood-making stem cells after exposure to radiation, according to Duke Medicine researchers. The finding could open new options for treating cancer patients and victims of dirty bombs or nuclear disasters.

Reported in the Feb. 3, 2013, issue of the journal Nature Medicine, the researchers explored what had first appeared to be an anomaly among certain genetically modified mice with an abundance of epidermal growth factor in their bone marrow. The mice were protected from radiation damage, and the researchers questioned how this occurred.

"Epidermal growth factor was not known to stimulate hematopoiesis, which is the formation of blood components derived from hematopoietic stem cells," said senior author John Chute, M.D., a professor of medicine and professor of pharmacology and cancer biology at Duke University. "However, our studies demonstrate that the epidermal growth promotes hematopoietic stem cell growth and regeneration after injury."

Hematopoietic stem cells, which constantly churn out new blood and immune cells, are highly sensitive to radiation damage. Protecting these cells or improving their regeneration after injury could benefit patients who are undergoing bone marrow transplantation, plus others who suffer radiation injury from accidental environmental exposures such as the Japanese nuclear disaster in 2011.

The Duke researchers launched their investigation using mice specially bred with deletions of two genes that regulate the death of endothelial cells, which line the inner surface of blood vessels and are thought to regulate the fate of hematopoietic stem cells. Blood vessels and the hematopoietic system in these mice were less damaged when exposed to high doses of radiation, improving their survival.

An analysis of secretions from bone marrow endothelial cells of the protected mice showed that epidermal growth factor (EGF) was significantly elevated - up to 18-fold higher than what was found in the serum of control mice. The researchers then tested whether EGF could directly spur the growth of stem cells in irradiated bone marrow cultured in the lab. It did, with significant recovery of stem cells capable of repopulating transplanted mice.

Next, the Duke team tried the approach in mice using three different solutions of cells in animals undergoing bone marrow transplants. One group received regular bone marrow cells; a second group got bone marrow cells from donors that had been irradiated and treated with EGF; a third group got bone marrow cells from irradiated donors treated with saline.

The regular bone marrow cells proliferated well and had the highest rate of engraftment in the recipient mice. But mice that were transplanted with the cells from irradiated/EGF-treated donors had 20-fold higher engraftment rate than the third group.

Additional studies showed that EGF improved survival from a lethal radiation exposure, with 93 percent of mice surviving the radiation dose if they subsequently received treatment with EGF, compared to 53 percent surviving after treatment with a saline solution.

Chute said it appears that EGF works by repressing a protein called PUMA that normally triggers stem cell death following radiation exposure.

"We are just beginning to understand the mechanisms through which EGF promotes stem cell regeneration after radiation injury," Chute said. "This study suggests that EGF might have potential to accelerate the recovery of the blood system in patients treated with chemotherapy or radiation."

In addition to Chute, study authors include Phuong L. Doan, Heather A. Himburg, Katherine Helms, J. Lauren Russell, Emma Fixsen, Mamle Quarmyne, Jeffrey R. Harris, Divino Deoliviera, Julie M. Sullivan, Nelson J. Chao and David G. Kirsch.

The study was funded by the National Heart, Lung and Blood Institute (HL-086998-01); the National Institute of Allergy and Infectious Diseases (AI-067798-06, AI-067798-01); the National Institutes of Health (T32 HL0070757-33); the Barton Haynes Award and Duke University.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational High-Throughput-Screening findet neue Hartmagnete die weniger Seltene Erden enthalten

Für Zukunftstechnologien wie Elektromobilität und erneuerbare Energien ist der Einsatz von starken Dauermagneten von großer Bedeutung. Für deren Herstellung werden Seltene Erden benötigt. Dem Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg ist es nun gelungen, mit einem selbst entwickelten Simulationsverfahren auf Basis eines High-Throughput-Screening (HTS) vielversprechende Materialansätze für neue Dauermagnete zu identifizieren. Das Team verbesserte damit die magnetischen Eigenschaften und ersetzte gleichzeitig Seltene Erden durch Elemente, die weniger teuer und zuverlässig verfügbar sind. Die Ergebnisse wurden im Online-Fachmagazin »Scientific Reports« publiziert.

Ausgangspunkt des Projekts der IWM-Forscher Wolfgang Körner, Georg Krugel und Christian Elsässer war eine Neodym-Eisen-Stickstoff-Verbindung, die auf einem...

Im Focus: University of Queensland: In weniger als 2 Stunden ans andere Ende der Welt reisen

Ein internationales Forschungsteam, darunter Wissenschaftler der University of Queensland, hat im Süden Australiens einen erfolgreichen Hyperschallgeschwindigkeitstestflug absolviert und damit futuristische Reisemöglichkeiten greifbarer gemacht.

Flugreisen von London nach Sydney in unter zwei Stunden werden, dank des HiFiRE Programms, immer realistischer. Im Rahmen dieses Projekts werden in den...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Mit atomarer Präzision: Technologien für die übernächste Chipgeneration

Im Projekt »Beyond EUV« entwickeln die Fraunhofer-Institute für Lasertechnik ILT in Aachen und für angewandte Optik und Feinmechanik IOF in Jena wesentliche Technologien zur Fertigung einer neuen Generation von Mikrochips mit EUV-Strahlung bei 6,7 nm. Die Strukturen sind dann kaum noch dicker als einzelne Atome und ermöglichen besonders hoch integrierte Schaltkreise zum Beispiel für Wearables oder gedankengesteuerte Prothesen.

Gordon Moore formulierte 1965 das später nach ihm benannte Gesetz, wonach sich alle ein bis zwei Jahre die Komplexität integrierter Schaltungen verdoppelt. Er...

Im Focus: Ein negatives Enzym liefert positive Resultate

In den letzten zwanzig Jahren hat die Chemie viele wichtige Instrumente und Verfahren für die Biologie hervorgebracht. Heute können wir Proteine herstellen, die in der Natur bisher nicht vorkommen. Es lassen sich Bilder von Ausschnitten lebender Zellen aufnehmen und sogar einzelne Zellen in lebendigen Tieren beobachten. Diese Woche haben zwei Forschungsgruppen der Universitäten Basel und Genf, die beide dem Nationalen Forschungsschwerpunkt Molecular Systems Engineering angehören, im Forschungsmagazin «ACS Central Science» präsentiert, wie man ein nicht-natürliches Protein designt, das völlig neue Fähigkeiten aufweist.

Proteine sind die Arbeitspferde jeder Zelle. Sie bestehen aus Aminosäurebausteinen, die als Kette verbunden sind, welche sich zu funktionalen Maschinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juli 2016

25.05.2016 | Veranstaltungen

"European Conference on Modelling and Simulation" an der OTH Regensburg

25.05.2016 | Veranstaltungen

Fachtagung »Magnetwerkstoffe und Seltene Erden«

25.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ILA 2016: Additive Produktion ­einsatzfähiger Bauteile durch effiziente Prozessketten

25.05.2016 | Messenachrichten

Reliable in-line inspections of high-strength automotive body parts within seconds

25.05.2016 | Messenachrichten

Wie Zellen Barrieren überwinden

25.05.2016 | Förderungen Preise