Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Growth factor aids stem cell regeneration after radiation damage

04.02.2013
Epidermal growth factor has been found to speed the recovery of blood-making stem cells after exposure to radiation, according to Duke Medicine researchers. The finding could open new options for treating cancer patients and victims of dirty bombs or nuclear disasters.

Reported in the Feb. 3, 2013, issue of the journal Nature Medicine, the researchers explored what had first appeared to be an anomaly among certain genetically modified mice with an abundance of epidermal growth factor in their bone marrow. The mice were protected from radiation damage, and the researchers questioned how this occurred.

"Epidermal growth factor was not known to stimulate hematopoiesis, which is the formation of blood components derived from hematopoietic stem cells," said senior author John Chute, M.D., a professor of medicine and professor of pharmacology and cancer biology at Duke University. "However, our studies demonstrate that the epidermal growth promotes hematopoietic stem cell growth and regeneration after injury."

Hematopoietic stem cells, which constantly churn out new blood and immune cells, are highly sensitive to radiation damage. Protecting these cells or improving their regeneration after injury could benefit patients who are undergoing bone marrow transplantation, plus others who suffer radiation injury from accidental environmental exposures such as the Japanese nuclear disaster in 2011.

The Duke researchers launched their investigation using mice specially bred with deletions of two genes that regulate the death of endothelial cells, which line the inner surface of blood vessels and are thought to regulate the fate of hematopoietic stem cells. Blood vessels and the hematopoietic system in these mice were less damaged when exposed to high doses of radiation, improving their survival.

An analysis of secretions from bone marrow endothelial cells of the protected mice showed that epidermal growth factor (EGF) was significantly elevated - up to 18-fold higher than what was found in the serum of control mice. The researchers then tested whether EGF could directly spur the growth of stem cells in irradiated bone marrow cultured in the lab. It did, with significant recovery of stem cells capable of repopulating transplanted mice.

Next, the Duke team tried the approach in mice using three different solutions of cells in animals undergoing bone marrow transplants. One group received regular bone marrow cells; a second group got bone marrow cells from donors that had been irradiated and treated with EGF; a third group got bone marrow cells from irradiated donors treated with saline.

The regular bone marrow cells proliferated well and had the highest rate of engraftment in the recipient mice. But mice that were transplanted with the cells from irradiated/EGF-treated donors had 20-fold higher engraftment rate than the third group.

Additional studies showed that EGF improved survival from a lethal radiation exposure, with 93 percent of mice surviving the radiation dose if they subsequently received treatment with EGF, compared to 53 percent surviving after treatment with a saline solution.

Chute said it appears that EGF works by repressing a protein called PUMA that normally triggers stem cell death following radiation exposure.

"We are just beginning to understand the mechanisms through which EGF promotes stem cell regeneration after radiation injury," Chute said. "This study suggests that EGF might have potential to accelerate the recovery of the blood system in patients treated with chemotherapy or radiation."

In addition to Chute, study authors include Phuong L. Doan, Heather A. Himburg, Katherine Helms, J. Lauren Russell, Emma Fixsen, Mamle Quarmyne, Jeffrey R. Harris, Divino Deoliviera, Julie M. Sullivan, Nelson J. Chao and David G. Kirsch.

The study was funded by the National Heart, Lung and Blood Institute (HL-086998-01); the National Institute of Allergy and Infectious Diseases (AI-067798-06, AI-067798-01); the National Institutes of Health (T32 HL0070757-33); the Barton Haynes Award and Duke University.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie