Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gift-Paket: Rätsel des Transports geklärt

24.02.2012
MHH-Wissenschaftler fanden heraus, wie Botulinum-Gift ins Blut gelangt / Einfachere Therapie vieler Erkrankungen in Aussicht / Veröffentlichung in Science

Wissenschaftler der Medizinischen Hochschule Hannover (MHH) haben zusammen mit amerikanischen Kollegen aufgeklärt, wie das Bakterium Clostridium botulinum sein Nervengift in das Blut des Menschen schleust.

Das Team um Dr. Andreas Rummel vom Institut für Toxikologie – Sophie Rumpel, Jasmin Strotmeier, Professor Dr. Hans Bigalke, Nadja Krez und Anna Magdalena Kruel – veröffentlichte seine Ergebnisse in der angesehenen Zeitschrift „Science“ gemeinsam mit Professor Rongsheng Jin, Sanford-Burnham Medical Institute, LaJolla, Kalifornien.

Mit Botulinumtoxin werden schwere Bewegungsstörungen erfolgreich behandelt und als „Botox“ spielt es bei kosmetischer Faltenglättung eine wichtige Rolle. Ist es aber in verdorbenem Fleisch oder Fisch enthalten, führt es zu schweren Lebensmittelvergiftungen. Dabei gelangt dieses hochmolekulare Eiweiß ins Blut. „Das ist höchst verwunderlich und einmalig in der Natur, denn Eiweiße kommen normalerweise nicht in ihrer ursprünglichen Form im Blut an, sondern werden zuvor von Magensaft und Bauchspeicheldrüsen-Enzymen zerlegt“, sagt Dr. Rummel.

Das Bakterium C. botulinum hat jedoch eine raffinierte Methode entwickelt, mit der es sein Gift unbeschadet durch das für Eiweiße feindliche Milieu schleust: Es verpackt das Toxin in ein säure- und enzymstabiles Paket. Erst im Darm öffnet sich das Paket und das freigelassene Gift kann durch die Darmwand ins Blut gelangen. Hierzu nutzt das Bakterium die unterschiedlichen pH-Werte der verschiedenen Darmabschnitte: Ein pH-Sensor am Paket misst den neutralen pH-Wert im unteren Darmabschnitt und löst zum geeigneten Zeitpunkt die Gift-Freigabe aus.

Den Wissenschaftlern gelang es unter anderem mit Hilfe der Röntgenstrukturanalyse einen Komplex bestehend aus einem inaktivierten Botulinustoxin und einem sehr stabilen Schutzeiweiß gentechnisch herzustellen und zu kristallisieren. Er besteht aus mehr als 2.600 Aminosäuren beziehungsweise 21.000 Atomen. Die Forscher konnten auch die pH-Sensoren charakterisieren. „Diese Kenntnisse ermöglichen es, Arzneistoffe auf Eiweißebene, die bisher intravenös verabreicht werden müssen, gegen Botulinumtoxin auszutauschen und für eine orale Verabreichung verfügbar zu machen. Dazu gehören zum Beispiel Insulin, Erythropoetin (EPO), Wachstums- und Gerinnungsfaktoren. Das Transportvehikel könne die Behandlung vieler Krankheiten erleichtern, beispielsweise der Diabetes mellitus. Dazu haben wir bereits erste Kontakte mit einer interessierten Firma aufgenommen“, erläutert Dr. Rummel.

Weitere Informationen erhalten Sie von Dr. Andreas Rummel, Tel. (0511) 532-2819, rummel.andreas@mh-hannover.de

Stefan Zorn | idw
Weitere Informationen:
http://www.mh-hannover.de

Weitere Berichte zu: Bakterien Botox Botulinumtoxin A C. botulinum Darmabschnitt Eiweiß Gift Gift-Paket Paket pH-Sensor

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops