Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gewebestruktur verlangsamt Krebsentwicklung

09.12.2011
Forscher zeigen im Computermodell, dass räumlich strukturiertes Körpergewebe die Tumorentstehung verzögert

Krebs ist normalerweise das Ergebnis einer längeren Entwicklung. Im Laufe der Zeit häufen sich genetische Veränderungen in den Zellen an, die zuerst zur Bildung von Krebsvorstufen und schließlich zum Tumorwachstum führen können.

Wissenschaftler am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen haben nun in einem mathematischen Modell gezeigt, dass die räumliche Gewebestruktur, wie etwa im Darm, die Anhäufung von genetischen Veränderungen verlangsamt und so die Krebsentstehung hinauszögert. Das Modell könnte möglicherweise helfen, Gewebebiopsien zu beurteilen und bessere Prognosen über die Entwicklung bestimmter Krebserkrankungen zu machen.

Viele Krebsarten entwickeln sich im Körper unbemerkt über viele Jahre hinweg, bevor die Krankheit ausbricht. Ausgangspunkt sind bestimmte genetische Veränderungen, die sich nach und nach in den Zellen anhäufen und so zur Bildung von Krebsvorstufen führen. Ist eine gewisse Zahl von Veränderungen in einzelnen Zellen erreicht, fangen diese an, unkontrolliert weiterzuwachsen. Der Anhäufungsprozess kann bei manchen Krebsarten bis zu 20 Jahre dauern.

Doch nicht jeder Mensch, der Krebsvorstufen in sich trägt, erkrankt auch tatsächlich. Oft bleibt die Entstehung der abnormen Zellen folgenlos. Warum sich in einigen Fällen eine Krebserkrankung entwickelt und in anderen nicht, ist bisher nur unzureichend erforscht.

Eine Forschergruppe um Erik Martens und Oskar Hallatschek vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen haben mithilfe von mathematischer Modellierung untersucht, wie sich genetische Veränderungen ausbreiten, wie schnell der Anhäufungsprozess von genetischen Veränderungen abläuft und wie sich dieser Prozess auf den Verlauf der Krebsvorstufe auswirkt.

Die Wissenschaftler haben gezeigt, dass das Schicksal von genetischen Veränderungen, die zu Krebs führen können, unter anderem davon abhängt, in welchem Umfeld sie auftreten und wie stark sie miteinander im Wettbewerb stehen. In einer Umgebung ohne räumliche Struktur, wie etwa im Blut, können sich genetische Veränderungen relativ schnell ausbreiten und anhäufen. In Geweben, die oft eine ausgeprägte räumliche Struktur aufweisen, wie beispielsweise im Darm, dauert es dagegen länger, bis die für Krebs notwendige Zahl von Veränderungen erreicht ist.

Grundlage der Studie war ein evolutionstheoretisches Modell, das die beiden Max-Planck-Forscher entwickelt haben. Viele genetische Veränderungen sind für die mutierten Zellen nachteilig, so dass sie oft zugrunde gehen. Umgekehrt verleihen bestimmte genetische Veränderungen ihren Trägern einen Wettbewerbsvorteil gegenüber anderen Zellen. Dazu zählen etwa Mutationen die bewirken, dass sich die Zelle schneller teilt. „Aufgrund ihres unmittelbaren Vorteils können sich Zellen mit solchen Mutationen ausbreiten und im Gewebe anhäufen; allerdings entspricht dieser Vorteil der Zelle einem Nachteil für den Patienten, da er letztlich Krebs verursachen kann“, erklärt Erik Martens die Situation.

Das Modell der Forscher basiert auf einem Gewebe wie der Darmwand. Darin finden sich viele Nischen mit voneinander isolierten Gruppen von Zellen, die unterschiedliche Mutationen in sich tragen können. Entstehen Mutationen eher selten, können sie sich ungehindert über das gesamte vorerkrankte Gewebe ausbreiten. Wenn aber weitere Mutationen auftreten, bevor sich die erste im Gewebe vollständig ausgebreitet hat, treffen die verschiedenartig mutierten Zellen aufeinander und stehen miteinander im Wettbewerb ums Überleben. In diesem Wettkampf gibt es viele Verlierer und nur wenige Gewinner, und nur bestimmte Mutationen können sich durchsetzen.

Vorteilhafte Mutationen können sich in Populationen mit räumlicher Struktur grundsätzlich weniger schnell ausbreiten als in vollständig durchmischten, also strukturlosen Populationen. Die Konkurrenz unter den Mutationen in räumlich strukturierten Geweben ist daher oft sehr stark ausgeprägt, und die Rate, mit der sich Mutationen im gesamten erkrankten Gewebe anhäufen, ist geringer als in einer nicht-strukturierten Population. Die Forscher zeigen in ihrer Studie, dass es deswegen in strukturierten Populationen länger dauert, bis eine kritische Zahl an Mutationen erreicht ist: Der Ausbruch des Krebs verzögert sich.

„Obwohl viele Krebsarten in Körpergeweben mit klar ausgeprägter räumlicher Struktur entstehen, haben frühere Modelle zur Krebsentwicklung diesen Aspekt meistens vernachlässigt und sind von einer gut durchmischten Zellpopulation ausgegangen”, sagt Erik Martens. „Um besser abschätzen zu können, wie sich Krebsvorstufen weiterentwickeln, ist es aber wichtig, diese Struktur mit einzubeziehen. Beispielsweise kann ein Gewebe mit räumlich strukturierten Zellen in derselben Zeit weniger Mutationen anhäufen als eines, in dem die Zellen unstrukturiert vorliegen. Es könnte also sein, dass die Zahl der für Krebs notwendigen Mutationen für gewisse Krebsarten überschätzt wurde.“ Die Forscher hoffen, dass ihre Resultate dazu beitragen könnten, Gewebebiopsien besser zu beurteilen und realistischere Prognosen über den Verlauf einer Krebserkrankung zu machen.

Ansprechpartner
Dr. Erik Martens
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 517-6271
E-Mail: erik.martens@ds.mpg.de
Dr. Oskar Hallatschek
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 517-6670
E-Mail: oskar.hallatschek@ds.mpg.de
Originalveröffentlichung
Erik A. Martens, Rumen Kostadinov, Carlo C. Maley and Oskar Hallatschek
Spatial structure increases the waiting time for cancer
New Journal of Physics 13, 115014 (2011); DOI: 10.1088/1367-2630/13/11/115014

Dr. Erik Martens | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4691126/Geschwindigkeit_Krebsentwicklung

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

nachricht Tropenviren bald auch in Europa? Bayreuther Forscher untersuchen Folgen des Klimawandels
21.06.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie