Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gewebestruktur verlangsamt Krebsentwicklung

09.12.2011
Forscher zeigen im Computermodell, dass räumlich strukturiertes Körpergewebe die Tumorentstehung verzögert

Krebs ist normalerweise das Ergebnis einer längeren Entwicklung. Im Laufe der Zeit häufen sich genetische Veränderungen in den Zellen an, die zuerst zur Bildung von Krebsvorstufen und schließlich zum Tumorwachstum führen können.

Wissenschaftler am Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen haben nun in einem mathematischen Modell gezeigt, dass die räumliche Gewebestruktur, wie etwa im Darm, die Anhäufung von genetischen Veränderungen verlangsamt und so die Krebsentstehung hinauszögert. Das Modell könnte möglicherweise helfen, Gewebebiopsien zu beurteilen und bessere Prognosen über die Entwicklung bestimmter Krebserkrankungen zu machen.

Viele Krebsarten entwickeln sich im Körper unbemerkt über viele Jahre hinweg, bevor die Krankheit ausbricht. Ausgangspunkt sind bestimmte genetische Veränderungen, die sich nach und nach in den Zellen anhäufen und so zur Bildung von Krebsvorstufen führen. Ist eine gewisse Zahl von Veränderungen in einzelnen Zellen erreicht, fangen diese an, unkontrolliert weiterzuwachsen. Der Anhäufungsprozess kann bei manchen Krebsarten bis zu 20 Jahre dauern.

Doch nicht jeder Mensch, der Krebsvorstufen in sich trägt, erkrankt auch tatsächlich. Oft bleibt die Entstehung der abnormen Zellen folgenlos. Warum sich in einigen Fällen eine Krebserkrankung entwickelt und in anderen nicht, ist bisher nur unzureichend erforscht.

Eine Forschergruppe um Erik Martens und Oskar Hallatschek vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen haben mithilfe von mathematischer Modellierung untersucht, wie sich genetische Veränderungen ausbreiten, wie schnell der Anhäufungsprozess von genetischen Veränderungen abläuft und wie sich dieser Prozess auf den Verlauf der Krebsvorstufe auswirkt.

Die Wissenschaftler haben gezeigt, dass das Schicksal von genetischen Veränderungen, die zu Krebs führen können, unter anderem davon abhängt, in welchem Umfeld sie auftreten und wie stark sie miteinander im Wettbewerb stehen. In einer Umgebung ohne räumliche Struktur, wie etwa im Blut, können sich genetische Veränderungen relativ schnell ausbreiten und anhäufen. In Geweben, die oft eine ausgeprägte räumliche Struktur aufweisen, wie beispielsweise im Darm, dauert es dagegen länger, bis die für Krebs notwendige Zahl von Veränderungen erreicht ist.

Grundlage der Studie war ein evolutionstheoretisches Modell, das die beiden Max-Planck-Forscher entwickelt haben. Viele genetische Veränderungen sind für die mutierten Zellen nachteilig, so dass sie oft zugrunde gehen. Umgekehrt verleihen bestimmte genetische Veränderungen ihren Trägern einen Wettbewerbsvorteil gegenüber anderen Zellen. Dazu zählen etwa Mutationen die bewirken, dass sich die Zelle schneller teilt. „Aufgrund ihres unmittelbaren Vorteils können sich Zellen mit solchen Mutationen ausbreiten und im Gewebe anhäufen; allerdings entspricht dieser Vorteil der Zelle einem Nachteil für den Patienten, da er letztlich Krebs verursachen kann“, erklärt Erik Martens die Situation.

Das Modell der Forscher basiert auf einem Gewebe wie der Darmwand. Darin finden sich viele Nischen mit voneinander isolierten Gruppen von Zellen, die unterschiedliche Mutationen in sich tragen können. Entstehen Mutationen eher selten, können sie sich ungehindert über das gesamte vorerkrankte Gewebe ausbreiten. Wenn aber weitere Mutationen auftreten, bevor sich die erste im Gewebe vollständig ausgebreitet hat, treffen die verschiedenartig mutierten Zellen aufeinander und stehen miteinander im Wettbewerb ums Überleben. In diesem Wettkampf gibt es viele Verlierer und nur wenige Gewinner, und nur bestimmte Mutationen können sich durchsetzen.

Vorteilhafte Mutationen können sich in Populationen mit räumlicher Struktur grundsätzlich weniger schnell ausbreiten als in vollständig durchmischten, also strukturlosen Populationen. Die Konkurrenz unter den Mutationen in räumlich strukturierten Geweben ist daher oft sehr stark ausgeprägt, und die Rate, mit der sich Mutationen im gesamten erkrankten Gewebe anhäufen, ist geringer als in einer nicht-strukturierten Population. Die Forscher zeigen in ihrer Studie, dass es deswegen in strukturierten Populationen länger dauert, bis eine kritische Zahl an Mutationen erreicht ist: Der Ausbruch des Krebs verzögert sich.

„Obwohl viele Krebsarten in Körpergeweben mit klar ausgeprägter räumlicher Struktur entstehen, haben frühere Modelle zur Krebsentwicklung diesen Aspekt meistens vernachlässigt und sind von einer gut durchmischten Zellpopulation ausgegangen”, sagt Erik Martens. „Um besser abschätzen zu können, wie sich Krebsvorstufen weiterentwickeln, ist es aber wichtig, diese Struktur mit einzubeziehen. Beispielsweise kann ein Gewebe mit räumlich strukturierten Zellen in derselben Zeit weniger Mutationen anhäufen als eines, in dem die Zellen unstrukturiert vorliegen. Es könnte also sein, dass die Zahl der für Krebs notwendigen Mutationen für gewisse Krebsarten überschätzt wurde.“ Die Forscher hoffen, dass ihre Resultate dazu beitragen könnten, Gewebebiopsien besser zu beurteilen und realistischere Prognosen über den Verlauf einer Krebserkrankung zu machen.

Ansprechpartner
Dr. Erik Martens
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 517-6271
E-Mail: erik.martens@ds.mpg.de
Dr. Oskar Hallatschek
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 517-6670
E-Mail: oskar.hallatschek@ds.mpg.de
Originalveröffentlichung
Erik A. Martens, Rumen Kostadinov, Carlo C. Maley and Oskar Hallatschek
Spatial structure increases the waiting time for cancer
New Journal of Physics 13, 115014 (2011); DOI: 10.1088/1367-2630/13/11/115014

Dr. Erik Martens | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4691126/Geschwindigkeit_Krebsentwicklung

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Dimethylfumarat – eine neue Behandlungsoption für Lymphome
28.03.2017 | Wilhelm Sander-Stiftung

nachricht Die bestmögliche Behandlung bei Hirntumor-Erkrankungen
28.03.2017 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit