Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geschwindigkeitsrekord im Gehirn

02.10.2014

Nervenzellen im Gehirn können Informationen mit erstaunlich hoher Geschwindigkeit austauschen, nämlich 1.000 Mal pro Sekunde. Ein wichtiger Faktor für die schnelle Informationsverarbeitung.

Neurophysiologen der Universität Leipzig haben ein neues Verfahren entwickelt, mit dem sie Aktionspotenziale vor und hinter einer Kontaktstelle von zwei Nervenzellen messen können. Ihre Ergebnisse sind aktuell in der angesehenen neurowissenschaftlichen Zeitschrift "Neuron" erschienen.


Nervenzellen im Gehirn ticken enorm schnell.

Foto: Stefan Hallermann

Wie schnell tickt unser Gehirn? Die Antwort brachte für das Wissenschaftlerteam um Prof. Dr. Stefan Hallermann vom Carl-Ludwig-Institut für Physiologie eine überraschende Erkenntnis: Zusätzlich zu ihrer großen Anzahl und hohen Vernetzung ticken Nervenzellen im Gehirn auch noch enorm schnell. Das menschliche Gehirn hat ungefähr 100 Milliarden Nervenzellen.

Jede von ihnen ist durchschnittlich mit tausend anderen verbunden. Diese immense Parallelität allein führt schon zu Beschleunigung. Damit aber nicht genug, zusätzlich feuert jede Nervenzelle ihre elektrischen Signalreize auch noch mit enormer Geschwindigkeit an ihre Nachbarn weiter. Die Wissenschaftler sprechen von Aktionspotenzialen. Bisher galt die Einheit von 100 Hertz in den Lehrbüchern als Standard. Die Leipziger haben jetzt 1.000 Hertz gemessen.

"Im Experiment haben wir die Höchstleistung künstlich geschaffen, indem wir die Zellen bei maximaler Stimulation bis an ihre Leistungsgrenze führten", sagt Hallermann. "Aber die Tatsache, dass die Zellen so schnell feuern können, spricht für mich dafür, dass das Potenzial auch benutzt wird."

Mehr als die Frequenz habe ihn jedoch überrascht, so der Neurophysiologe, dass die Aktionspotenziale in der Zelle so kurz, also ultraschnell, sind. Kurze Aktionspotenziale machen den Weg frei, schnell danach ein weiteres hinterher feuern zu können. "Wenn die Aktionspotenziale länger wären, beispielsweise eine Millisekunde, wären Frequenzen von 1.000 Hertz nicht möglich," erläutert einer der Erstautoren, Dr. Igor Delvendahl.

Mit neuer Messmethode zum Erfolg

Die zweite überraschende Erkenntnis der Arbeit ist, dass die Aktionspotenziale zur nächsten Zelle übertragen werden. Diese Erkenntnis konnte nur gewonnen werden, weil die Leipziger Wissenschaftler ein kompliziertes Messverfahren an den Kontaktstellen von zwei Nervenzellen (Synapsen) entwickelten. Diese methodische Weiterentwicklung macht einen großen Teil der wissenschaftlichen Arbeit aus.

Bei der sogenannten "patch-clamp-Technik" werden winzige Glaspipetten mit einem Durchmesser von einem Mikrometer an die Zellen herangefahren, um ihre elektrischen Signale zu messen. Die Herausforderung war es, eine Pipette auf die Signale sendenden feinen Enden (Axone oder auch präsynaptischen Endigungen) sowie gleichzeitig eine zweite Pipette auf den Zellkörper der empfangenden Zelle zu positionieren.

Um die präsynaptischen Endigungen besser finden zu können, haben die Wissenschaftler sie fluoreszierend eingefärbt. Es gibt wenige Stellen im Gehirn, an denen derartige Paarableitungen von der prä- und postsynaptischen Zelle möglich sind. Deshalb ist die neue Messmethode ein technischer Durchbruch.

Rennen und einem unerwarteten Hindernis ausweichen: Die Wissenschaft weiß noch nicht, wo genau solch schnelle Entscheidungen im Gehirn entstehen, wahrscheinlich arbeiten mehrere Areale zusammen. Die Leipziger haben sich deshalb auf ein Areal konzentriert, bei dem ein Großteil der sensorischen Information landet und weitergegeben werden muss.

Damit es an solch einer Stelle nicht zu einer Art Verkehrsstau kommt, müssen die Informationen möglichst schnell über kurze Aktionspotenziale weitergegeben werden. Wie eine schnelle Signalweitergabe an die Muskeln funktioniert, ist bislang noch nicht geklärt, weil es technisch nicht leicht ist, solche hohen Frequenzen zu analysieren.

"Für den Neurostandort Leipzig ist es wichtig, dass wir im Team solche international sichtbaren Publikationen zustande bringen. Das ebnet letztlich den Weg, gute Mitarbeiter zu gewinnen und Forschungsverbünde aufzubauen", ist Hallermann überzeugt. Den Mediziner und Physiker fasziniert es, mit naturwissenschaftlichen Methoden und hochtechnischen Mikroskopen die Informationsverarbeitung im Gehirn zu untersuchen. Langfristig hat er die Hoffnung, dass mit Hilfe der Grundlagenforschung die Hirnfunktionen besser verstanden werden, um dann bei neurologischen oder psychiatrischen Erkrankungen zu einer besseren Therapie zu kommen.

Fachveröffentlichung:
Ultrafast Action Potentials Mediate Kilohertz Signaling at a Central Synapse
DOI: 10.1016 / j.neuron.2014.08.036

Weitere Informationen:

Prof. Dr. Stefan Hallermann
Carl-Ludwig-Institut für Physiologie / Lehrstuhl für Neurophysiologie
Telefon: +49 341 97-15500
E-Mail: stefan.hallermann@medizin.uni-leipzig.de
Web: http://cliphys.uniklinikum-leipzig.de

Diana Smikalla | Universität Leipzig

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Wachablösung im Immunsystem: wie Dendritische Zellen ihre Bewaffnung an Mastzellen übergeben
16.11.2017 | Universitätsklinikum Magdeburg

nachricht Wie Lungenkrebs zur Entstehung von Lungenhochdruck führt
16.11.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Gene für das Risiko von allergischen Erkrankungen entdeckt

21.11.2017 | Studien Analysen

Wafer zu Chip: Röntgenblick für weniger Ausschuss

21.11.2017 | Informationstechnologie

Nanopartikel helfen bei Malariadiagnose – neuer Schnelltest in der Entwicklung

21.11.2017 | Biowissenschaften Chemie