Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geschwindigkeitsrekord im Gehirn

02.10.2014

Nervenzellen im Gehirn können Informationen mit erstaunlich hoher Geschwindigkeit austauschen, nämlich 1.000 Mal pro Sekunde. Ein wichtiger Faktor für die schnelle Informationsverarbeitung.

Neurophysiologen der Universität Leipzig haben ein neues Verfahren entwickelt, mit dem sie Aktionspotenziale vor und hinter einer Kontaktstelle von zwei Nervenzellen messen können. Ihre Ergebnisse sind aktuell in der angesehenen neurowissenschaftlichen Zeitschrift "Neuron" erschienen.


Nervenzellen im Gehirn ticken enorm schnell.

Foto: Stefan Hallermann

Wie schnell tickt unser Gehirn? Die Antwort brachte für das Wissenschaftlerteam um Prof. Dr. Stefan Hallermann vom Carl-Ludwig-Institut für Physiologie eine überraschende Erkenntnis: Zusätzlich zu ihrer großen Anzahl und hohen Vernetzung ticken Nervenzellen im Gehirn auch noch enorm schnell. Das menschliche Gehirn hat ungefähr 100 Milliarden Nervenzellen.

Jede von ihnen ist durchschnittlich mit tausend anderen verbunden. Diese immense Parallelität allein führt schon zu Beschleunigung. Damit aber nicht genug, zusätzlich feuert jede Nervenzelle ihre elektrischen Signalreize auch noch mit enormer Geschwindigkeit an ihre Nachbarn weiter. Die Wissenschaftler sprechen von Aktionspotenzialen. Bisher galt die Einheit von 100 Hertz in den Lehrbüchern als Standard. Die Leipziger haben jetzt 1.000 Hertz gemessen.

"Im Experiment haben wir die Höchstleistung künstlich geschaffen, indem wir die Zellen bei maximaler Stimulation bis an ihre Leistungsgrenze führten", sagt Hallermann. "Aber die Tatsache, dass die Zellen so schnell feuern können, spricht für mich dafür, dass das Potenzial auch benutzt wird."

Mehr als die Frequenz habe ihn jedoch überrascht, so der Neurophysiologe, dass die Aktionspotenziale in der Zelle so kurz, also ultraschnell, sind. Kurze Aktionspotenziale machen den Weg frei, schnell danach ein weiteres hinterher feuern zu können. "Wenn die Aktionspotenziale länger wären, beispielsweise eine Millisekunde, wären Frequenzen von 1.000 Hertz nicht möglich," erläutert einer der Erstautoren, Dr. Igor Delvendahl.

Mit neuer Messmethode zum Erfolg

Die zweite überraschende Erkenntnis der Arbeit ist, dass die Aktionspotenziale zur nächsten Zelle übertragen werden. Diese Erkenntnis konnte nur gewonnen werden, weil die Leipziger Wissenschaftler ein kompliziertes Messverfahren an den Kontaktstellen von zwei Nervenzellen (Synapsen) entwickelten. Diese methodische Weiterentwicklung macht einen großen Teil der wissenschaftlichen Arbeit aus.

Bei der sogenannten "patch-clamp-Technik" werden winzige Glaspipetten mit einem Durchmesser von einem Mikrometer an die Zellen herangefahren, um ihre elektrischen Signale zu messen. Die Herausforderung war es, eine Pipette auf die Signale sendenden feinen Enden (Axone oder auch präsynaptischen Endigungen) sowie gleichzeitig eine zweite Pipette auf den Zellkörper der empfangenden Zelle zu positionieren.

Um die präsynaptischen Endigungen besser finden zu können, haben die Wissenschaftler sie fluoreszierend eingefärbt. Es gibt wenige Stellen im Gehirn, an denen derartige Paarableitungen von der prä- und postsynaptischen Zelle möglich sind. Deshalb ist die neue Messmethode ein technischer Durchbruch.

Rennen und einem unerwarteten Hindernis ausweichen: Die Wissenschaft weiß noch nicht, wo genau solch schnelle Entscheidungen im Gehirn entstehen, wahrscheinlich arbeiten mehrere Areale zusammen. Die Leipziger haben sich deshalb auf ein Areal konzentriert, bei dem ein Großteil der sensorischen Information landet und weitergegeben werden muss.

Damit es an solch einer Stelle nicht zu einer Art Verkehrsstau kommt, müssen die Informationen möglichst schnell über kurze Aktionspotenziale weitergegeben werden. Wie eine schnelle Signalweitergabe an die Muskeln funktioniert, ist bislang noch nicht geklärt, weil es technisch nicht leicht ist, solche hohen Frequenzen zu analysieren.

"Für den Neurostandort Leipzig ist es wichtig, dass wir im Team solche international sichtbaren Publikationen zustande bringen. Das ebnet letztlich den Weg, gute Mitarbeiter zu gewinnen und Forschungsverbünde aufzubauen", ist Hallermann überzeugt. Den Mediziner und Physiker fasziniert es, mit naturwissenschaftlichen Methoden und hochtechnischen Mikroskopen die Informationsverarbeitung im Gehirn zu untersuchen. Langfristig hat er die Hoffnung, dass mit Hilfe der Grundlagenforschung die Hirnfunktionen besser verstanden werden, um dann bei neurologischen oder psychiatrischen Erkrankungen zu einer besseren Therapie zu kommen.

Fachveröffentlichung:
Ultrafast Action Potentials Mediate Kilohertz Signaling at a Central Synapse
DOI: 10.1016 / j.neuron.2014.08.036

Weitere Informationen:

Prof. Dr. Stefan Hallermann
Carl-Ludwig-Institut für Physiologie / Lehrstuhl für Neurophysiologie
Telefon: +49 341 97-15500
E-Mail: stefan.hallermann@medizin.uni-leipzig.de
Web: http://cliphys.uniklinikum-leipzig.de

Diana Smikalla | Universität Leipzig

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Eine Teleskopschiene für Nanomaschinen
20.04.2018 | Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart

nachricht Künstlicher Leberfleck als Frühwarnsystem
19.04.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics