Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geschwindigkeitsrekord im Gehirn

02.10.2014

Nervenzellen im Gehirn können Informationen mit erstaunlich hoher Geschwindigkeit austauschen, nämlich 1.000 Mal pro Sekunde. Ein wichtiger Faktor für die schnelle Informationsverarbeitung.

Neurophysiologen der Universität Leipzig haben ein neues Verfahren entwickelt, mit dem sie Aktionspotenziale vor und hinter einer Kontaktstelle von zwei Nervenzellen messen können. Ihre Ergebnisse sind aktuell in der angesehenen neurowissenschaftlichen Zeitschrift "Neuron" erschienen.


Nervenzellen im Gehirn ticken enorm schnell.

Foto: Stefan Hallermann

Wie schnell tickt unser Gehirn? Die Antwort brachte für das Wissenschaftlerteam um Prof. Dr. Stefan Hallermann vom Carl-Ludwig-Institut für Physiologie eine überraschende Erkenntnis: Zusätzlich zu ihrer großen Anzahl und hohen Vernetzung ticken Nervenzellen im Gehirn auch noch enorm schnell. Das menschliche Gehirn hat ungefähr 100 Milliarden Nervenzellen.

Jede von ihnen ist durchschnittlich mit tausend anderen verbunden. Diese immense Parallelität allein führt schon zu Beschleunigung. Damit aber nicht genug, zusätzlich feuert jede Nervenzelle ihre elektrischen Signalreize auch noch mit enormer Geschwindigkeit an ihre Nachbarn weiter. Die Wissenschaftler sprechen von Aktionspotenzialen. Bisher galt die Einheit von 100 Hertz in den Lehrbüchern als Standard. Die Leipziger haben jetzt 1.000 Hertz gemessen.

"Im Experiment haben wir die Höchstleistung künstlich geschaffen, indem wir die Zellen bei maximaler Stimulation bis an ihre Leistungsgrenze führten", sagt Hallermann. "Aber die Tatsache, dass die Zellen so schnell feuern können, spricht für mich dafür, dass das Potenzial auch benutzt wird."

Mehr als die Frequenz habe ihn jedoch überrascht, so der Neurophysiologe, dass die Aktionspotenziale in der Zelle so kurz, also ultraschnell, sind. Kurze Aktionspotenziale machen den Weg frei, schnell danach ein weiteres hinterher feuern zu können. "Wenn die Aktionspotenziale länger wären, beispielsweise eine Millisekunde, wären Frequenzen von 1.000 Hertz nicht möglich," erläutert einer der Erstautoren, Dr. Igor Delvendahl.

Mit neuer Messmethode zum Erfolg

Die zweite überraschende Erkenntnis der Arbeit ist, dass die Aktionspotenziale zur nächsten Zelle übertragen werden. Diese Erkenntnis konnte nur gewonnen werden, weil die Leipziger Wissenschaftler ein kompliziertes Messverfahren an den Kontaktstellen von zwei Nervenzellen (Synapsen) entwickelten. Diese methodische Weiterentwicklung macht einen großen Teil der wissenschaftlichen Arbeit aus.

Bei der sogenannten "patch-clamp-Technik" werden winzige Glaspipetten mit einem Durchmesser von einem Mikrometer an die Zellen herangefahren, um ihre elektrischen Signale zu messen. Die Herausforderung war es, eine Pipette auf die Signale sendenden feinen Enden (Axone oder auch präsynaptischen Endigungen) sowie gleichzeitig eine zweite Pipette auf den Zellkörper der empfangenden Zelle zu positionieren.

Um die präsynaptischen Endigungen besser finden zu können, haben die Wissenschaftler sie fluoreszierend eingefärbt. Es gibt wenige Stellen im Gehirn, an denen derartige Paarableitungen von der prä- und postsynaptischen Zelle möglich sind. Deshalb ist die neue Messmethode ein technischer Durchbruch.

Rennen und einem unerwarteten Hindernis ausweichen: Die Wissenschaft weiß noch nicht, wo genau solch schnelle Entscheidungen im Gehirn entstehen, wahrscheinlich arbeiten mehrere Areale zusammen. Die Leipziger haben sich deshalb auf ein Areal konzentriert, bei dem ein Großteil der sensorischen Information landet und weitergegeben werden muss.

Damit es an solch einer Stelle nicht zu einer Art Verkehrsstau kommt, müssen die Informationen möglichst schnell über kurze Aktionspotenziale weitergegeben werden. Wie eine schnelle Signalweitergabe an die Muskeln funktioniert, ist bislang noch nicht geklärt, weil es technisch nicht leicht ist, solche hohen Frequenzen zu analysieren.

"Für den Neurostandort Leipzig ist es wichtig, dass wir im Team solche international sichtbaren Publikationen zustande bringen. Das ebnet letztlich den Weg, gute Mitarbeiter zu gewinnen und Forschungsverbünde aufzubauen", ist Hallermann überzeugt. Den Mediziner und Physiker fasziniert es, mit naturwissenschaftlichen Methoden und hochtechnischen Mikroskopen die Informationsverarbeitung im Gehirn zu untersuchen. Langfristig hat er die Hoffnung, dass mit Hilfe der Grundlagenforschung die Hirnfunktionen besser verstanden werden, um dann bei neurologischen oder psychiatrischen Erkrankungen zu einer besseren Therapie zu kommen.

Fachveröffentlichung:
Ultrafast Action Potentials Mediate Kilohertz Signaling at a Central Synapse
DOI: 10.1016 / j.neuron.2014.08.036

Weitere Informationen:

Prof. Dr. Stefan Hallermann
Carl-Ludwig-Institut für Physiologie / Lehrstuhl für Neurophysiologie
Telefon: +49 341 97-15500
E-Mail: stefan.hallermann@medizin.uni-leipzig.de
Web: http://cliphys.uniklinikum-leipzig.de

Diana Smikalla | Universität Leipzig

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Erste Verteidigungslinie gegen Grippe weiter entschlüsselt
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

nachricht Neue Behandlung mit Immunglobulinen hilft gegen Entzündung der weißen Hirnsubstanz bei Kindern
21.02.2018 | Universität Witten/Herdecke

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungsnachrichten

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics