Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geringe Radon-Konzentrationen erstmals genau messbar

24.07.2013
Neues Messverfahren aus der PTB kommt rechtzeitig zur Verschärfung der EU-Strahlenschutzrichtlinie.

Man sieht es nicht, man riecht es nicht, man schmeckt es nicht – aber es kann in hohen Dosen tödlich sein: Das natürliche radioaktive Edelgas Radon tritt vor allem dort aus dem Boden aus, wo der Untergrund aus Granit besteht.


Das neue Transfernormal der PTB ermöglicht Messungen der Radon-Aktivitätskonzentration von 200 Bq/m3 mit einer Messunsicherheit von 2 % (Foto: PTB)

Es kann aber auch in Baumaterialien vorhanden sein. Dass Radon in hohen Dosen Lungenkrebs verursacht, ist längst bekannt – viele Arbeiter aus den Uran-Minen der Wismut-Werke der DDR sind daran gestorben. Inzwischen schätzen aber Wissenschaftler, dass Radon auch in niedrigen Konzentrationen eine Gefahr sein kann, und haben die Strahlenwirkung darum offiziell hochgestuft: Das Gas trägt jetzt offiziell gleichauf mit medizinischen Diagnose- und Therapieverfahren am stärksten zur Strahlenbelastung der Bevölkerung bei. (Bisher galt der Anteil der Medizin, etwa durch Computertomografie-Untersuchungen, als etwas höher.)

Daher sind EU-weit die Richtwerte für Radon in Gebäuden gesenkt worden. Aber bisher können die Messgeräte die typischen, alltäglichen Radonkonzentrationen gar nicht genau genug messen. Mit einer von Diana Linzmaier in der Physikalisch-Technischen Bundesanstalt (PTB) entwickelten Low-Level-Radon-Referenzkammer samt dazugehörigem Transfernormal können erstmals Radon-Messgeräte in diesem zukünftig entscheidenden Bereich mit kleinen Messunsicherheiten kalibriert werden. Bislang ist die Anlage weltweit einzigartig.

Wer in seinem Leben wie viel schädliche Strahlung abbekommt, ist von Mensch zu Mensch sehr unter-schiedlich. Höhere Dosen sind es zum Beispiel bei Astronauten bei Weltraumflügen oder bei Krebspatienten, die eine Strahlentherapie über sich ergehen lassen müssen. Für den Durchschnittsbürger sind vor allem zwei Quellen der Strahlenbelastung wichtig – die eine von Menschen gemacht, die andere von der Natur. Das sind medizinische Diagnose- und Therapieverfahren auf der einen Seite und das natürlich vorkommende Radon auf der anderen. „Bei der Medizin macht vor allem die Computertomografie einen großen Anteil an der Strahlenbelastung aus“, erläutert PTB-Physikerin Annette Röttger.

Bei der natürlichen Exposition ist es hingegen vor allem das Radon: Wenn ein Haus zufällig auf einer Erdspalte steht, durch die besonders viel Radon aus dem Untergrund heraufdringt, könnte daraus eine Gefahr für die Bewohner erwachsen, vor allem bei schlechter Lüftung, wenn sich das Radon in der Raumluft anreichert. Radon-222 ist ein radioaktives Edelgas. Es zerfällt in verschiedene Schwermetalle, die ebenfalls radioaktiv zerfallen. Dabei entstehen Alpha-Strahler. „Ein Alpha-Strahler ist in Luft schon nach wenigen Zentimetern wirkungslos, erläutert Röttger. „Aber im Körper ist er höchst wirkungsvoll: Einmal zusammen mit dem Radon-Gas in die Lunge gekommen, kann er die Bronchien schädigen und Lungenkrebs auslösen.“

Gegen dieses natürliche Risiko aus dem Untergrund oder aus Baumaterialien (etwa Granitböden oder Gipsplatten, die ebenfalls Radon abgeben können) kann man sich schützen. „Doch das kann teuer werden“, sagt Annette Röttger. Bevor ein Bauherr anfängt, seinen Keller mit einer Dauerbelüftung zu versehen oder Gipsplatten herauszureißen, sollte er in jedem Fall erst einmal genau messen.

Und da zeigt sich das Dilemma: Radon kommt zwar bis zu Aktivitätskonzentrationen von ca. 100 000 Bq/m3 in deutschen Häusern vor, im Durchschnitt der Häuser sind es aber eher 50 Bq/m3 bis 200 Bq/m3. Messgeräte konnten bisher nur bei Konzentrationen von mindestens 1000 Bq/m3 kalibriert werden. „Darunter werden sie in jedem Fall ungenauer, manchmal sogar falsch. Wie viel, wissen wir aber nur selten“, sagt die Physikerin. Eine sehr unbefriedigende Lage – nicht nur für Bauherrn, sondern auch für Messgerätehersteller, die vermutlich in Zukunft dafür sorgen müssen, dass ihre Geräte für die Prüfung von Referenzwerten auch geeignet sind. Die Internationale Strahlenschutzkommission (International Commission on Radiological Protection, ICRP) hat nämlich die Bewertung der biologischen Wirksamkeit von Radon nach oben korrigiert.

Somit trägt Radon zu einer viel höheren effektiven Dosis bei als bisher angenommen. Das hat Folgen: Europaweit wird erstmals ein einheitlicher Referenzwert für die mittlere Radon-Konzentrationen in Gebäuden festgelegt. Dieser Referenzwert liegt bei 300 Bq/m3 und ist damit deutlich niedriger als die bisher unverbindlichen Empfehlungen.

In den nächsten drei Jahren sollen diese Vorgaben in nationales Recht umgesetzt werden. Das könnte in Deutschland schon im Herbst beginnen. Dann wird es statt der bisherigen Empfehlungen zum ersten Mal verbindliche Referenzwerte für die Radonkonzentration in öffentlichen Gebäuden, z. B. Schulen, geben.

Auf diese Entwicklung hat sich die PTB rechtzeitig eingestellt. Im Rahmen des Doktorandenprogramms entwickelte Diana Linzmaier mit dem Team der Radon-Messtechnik eine völlig neue Messeinrichtung, mit der erstmals auch die geringen alltagsrelevanten Aktivitätskonzentrationen genau gemessen werden können. Die Apparatur besteht aus mehreren Teilen: Am Anfang steht ein neu entwickeltes Radium-226-Aktivitätsnormal, das viel länger und kontinuierlich Radon (Rn-222, das Zerfallsprodukt von Ra 226) erzeugt als die bisherigen Radon-Aktivitätsnormale. Bei denen war spätestens nach vier Tagen, der Halbwertszeit von Radon, die Messzeit zuende. Diese neue Quelle lässt das Radon-Gas in genau bekannter Menge und Aktivität kontinuierlich in eine Kammer strömen, wo es mit Luft gemischt wird. So entsteht eine Referenz-Atmosphäre. „Wir haben hier also eine genau bekannte Luftmenge mit einer genau bekannten Radonmenge: also eine bekannte Aktivität in einem bestimmten Volumen“, sagt Röttger. Diese Werte sollte ein Messgerät nach der Kalibrierung möglichst exakt anzeigen. Und weil der bisherige Zeitdruck wegfällt, kann die Genauigkeit jetzt auch durch länger andauernde Messungen von bis zu mehreren Wochen gesteigert werden. Als Alternative kann die erzeugte Radon-Atmosphäre auch zu einem neuen, hochempfindlichen Messgerät hin transportiert werden (siehe Abbildung). Mit diesem hochempfindlichen Transfernormal kann eine Konzentration von 200 Bq/m3 mit einer Messunsicherheit von 2 % gemessen werden – und das in viel kürzerer Zeit.

Hersteller von Radon-Messgeräten können schon jetzt ihre Geräte bei der PTB oder beim Bundesamt für Strahlenschutz, das ebenfalls ein PTB-Transfernormal erhalten hat, kalibrieren lassen. Es ist zu vermuten, dass die besseren Messmöglichkeiten sich auf zukünftige Studien, die sich mit der Neubewertung des Lungenkrebsrisikos durch Radon beschäftigen, auswirken werden.

es/ptb

Ansprechpartnerin

Dr. Annette Röttger, PTB-Arbeitsgruppe 6.13 Radon-Messtechnik,
Telefon: (0531) 592-6130, E-Mail: annette.roettger@ptb.de
Wissenschaftliche Originalveröffentlichung
D. Linzmaier, A. Röttger: Development of a low-level radon reference atmosphere. Applied Radiation and Isotopes, doi: 10.1016/j.apradiso.2013.03.032 (2013)

Imke Frischmuth | PTB
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise