Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Genauso wirksam – weniger riskant: neue Therapie bei Schlaganfall?

04.09.2015

Nach einem Schlaganfall muss das Gehirn möglichst schnell und nachhaltig regeneriert werden. Die Wirksamkeit eines neuen Therapieansatzes hat nun ein Forscherteam der Universität Duisburg-Essen (UDE) am Universitätsklinikum Essen (UK Essen) überprüft. Sie konnten nachweisen, dass extrazelluläre Vesikel (u.a. Exosomen) genauso nachhaltig wirken wie adulte Stammzellen, von denen sie abgeleitet werden. Die Studie wurde jetzt erstmals in dem renommierten Fachmagazin Stem Cells Translational Medicine vorgestellt.

In den westlichen Industrieländern ist der Schlaganfall die dritthäufigste Todesursache und meist auch der Grund für schwere Behinderungen. Ist die Blutversorgung unterbrochen, sterben die betroffenen Nervenzellen innerhalb weniger Stunden ab.

Die zugrundeliegenden Mechanismen der Hirnschädigung und deren Behandlungsmöglichkeiten sind noch nicht vollständig bekannt. Große Hoffnungen verbinden sich mit dem regenerativen Potenzial von Stammzellen – sie können sich nach einer Transplantation allerdings auch unkontrolliert verhalten und z.B. Tumore bilden.

Genau dieser Nachteil fehlt den extrazellulären Vesikeln, deren winzige Strukturen von einer Membran umschlossen sind. Sie übertragen biologische Signale zwischen den Zellen und lenken viele Prozesse im menschlichen Körper. Abhängig von ihrem Ursprung und gezielt eingesetzt, können sie möglicherweise auch bei Krebs, schweren Infektionen und neurologischen Erkrankungen hilfreich sein.

Nun haben Wissenschaftler der Medizinischen Fakultät der UDE im Tierversuch herausgefunden, dass die extrazellulären Vesikeln nach einem Schlaganfall genauso wirksam sind wie die adulten Stammzellen, von denen sie produziert wurden.

Beide Therapieformen aktivieren die Reparatur von neurologischen Schäden im Gehirn vergleichbar gut und nachhaltig. Die motorischen Leistungen der betroffenen Versuchstiere verbesserten sich deutlich. Dies geht vermutlich darauf zurück, dass die extrazellulären Vesikel kurzfristig Reaktionen des Immunsystems verändern. So können die Hirnstrukturen vor weiteren Schädigungen geschützt und die gehirneigene Regeneration gefördert werden.

Die Vorteile liegen auf der Hand: „Die Behandlung mit extrazellulären Vesikeln ist weniger riskant, weil sie sich nicht vermehren können und einfacher zu handhaben sind“, erläutern PD Dr. Thorsten R. Döppner von der Klinik für Neurologie und PD Dr. Bernd Giebel vom Institut für Transfusionsmedizin am UK Essen.

Die Wissenschaftler forschen nun daran, wie sich die Erkenntnisse auf den klinischen Alltag übertragen lassen. An der Studie, die von der Volkswagenstiftung und dem IFORES-Programm der Medizinischen Fakultät der UDE unterstützt wurde, war ein Team aus insgesamt zehn Wissenschaftlern der Klinik für Neurologie und des Instituts für Transfusionsmedizin beteiligt.

Weitere Informationen: Christine Harrell, Tel. 0201/723 1615, christine.harrell@uk-essen.de

Beate Kostka | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-duisburg-essen.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hologramm für Moleküle

26.09.2017 | Biowissenschaften Chemie

Das Motorprotein tanzt in unseren Zellen

26.09.2017 | Biowissenschaften Chemie

Tauben beim Multitasking besser als Menschen

26.09.2017 | Biowissenschaften Chemie