Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirnstimulation löst unfaires Verhalten aus

11.09.2014

Die Fähigkeit, sich normgeleitet zu verhalten, ist eine wichtige Voraussetzung für das Zusammenleben in menschlichen Gesellschaften.

Wissenschaftler der Universitäten Bonn und Maastricht wiesen nun direkt nach, wie der dorsolaterale präfrontale Kortex im Gehirn die Verletzung sozialer Normen in Schach hält. Mit Hilfe von Transkranieller Magnetstimulation konnten sie die Aktivität dieser Gehirnstruktur hemmen und dadurch unfaires Verhalten in den Probanden hervorrufen. Die Ergebnisse sind jetzt vorab online in der Fachzeitschrift „Social Cognitive and Affective Neuroscience” erschienen.


Mit dem Transkraniellen Magnetstimulator hemmt Sabrina Strang (hinten) vom Center for Economics and Neuroscience (CENs) der Uni Bonn an einer Probandin die Aktivierung bestimmter Hirnstrukturen.

(c) Foto: Katharina Wislsperger/UKB

Wer in menschlichen Gesellschaften zurechtkommen will, muss auf andere Rücksicht nehmen und mit ihnen teilen. Wer nur auf sein eigenes Wohlergehen bedacht ist, steht rasch als Außenseiter da. Damit dies nicht passiert, eignen sich die meisten Menschen eine Strategie der Fairness an.

Schon seit längerem sehen Wissenschaftler einen Zusammenhang zwischen fairem Verhalten und einer Gehirnstruktur, die „dorsolateraler präfrontaler Kortex“ genannt wird und im Stirnlappen des Gehirns angesiedelt ist. „Diese Gehirnregion ist für die Selbstkontrolle verantwortlich. Davon brauchen wir ein gehöriges Maß, um unsere eigennützigen Impulse zurückzudrängen“, sagt Sabrina Strang, Mitarbeiterin von Prof. Dr. Bernd Weber am Center for Economics and Neuroscience (CENs) der Universität Bonn.

Den beiden Wissenschaftlern des CENs ist es nun mit Kollegen der Universität Maastricht (Niederlande) gelungen, den direkten funktionalen Zusammenhang zwischen dem dorsolateralen präfrontalen Kortex und normgeleitetem fairem Verhalten in einem Experiment nachzuweisen.

Dabei nutzte das Forscherteam die wissenschaftliche Erkenntnis, dass Menschen eher bereit sind zu teilen, wenn ihnen ansonsten Sanktionen drohen. „Bei Kindern ist die Bereitschaft viel größer, Süßigkeiten zu teilen, wenn ihnen als Strafe angedroht wird, die Leckereien ganz weggenommen zu bekommen“, nennt Strang ein Beispiel, das abgewandelt auch bei Erwachsenen funktioniert.

Probanden schlüpften in die Rolle von „Diktatoren“

Im Labor der Universität Maastricht führten die Wissenschaftler ein sogenanntes „Diktator-Spiel“ durch. Insgesamt 17 Probanden schlüpften in die Rolle der Diktatoren: Sie durften frei entscheiden, welchen Anteil eines vorher festgelegten Geldbetrags sie mit ihren Mitspielern teilen wollten. Als „Empfänger“ fungierten 60 weitere Probanden. Die Spielsituation wurde in zwei verschiedenen Varianten durchgeführt: In einer Version mussten die Empfänger schlicht hinnehmen, welche Entscheidung die Diktatoren trafen.

In der zweiten Variante hatten sie dagegen die Möglichkeit, die Diktatoren zu bestrafen. Wenn ihrer Meinung nach der zugeteilte Geldbetrag zu gering ausgefallen war, konnten sie den Diktator mir einer Geldstrafe sanktionieren. Wenn die Diktatoren keine Sanktionen zu befürchten hatten, waren sie – wie erwartet – deutlich knausriger, als wenn die „Empfänger“ sie für ihren Geiz bestrafen konnten.

Kurz bevor die Probanden die zwei Varianten des Diktatorspiels gespielt haben, schalteten die Forscher den dorsolateralen präfrontalen Kortex mit Hilfe der Transkranieller Magnetstimulation kurzfristig aus. Dabei wird mit einer Spule von außen durch die Schädeldecke der Probanden hindurch ein Magnetfeld erzeugt, das die Aktivität bestimmter Hirnregionen hemmen kann.

„Diese Methode ist für die Testpersonen ungefährlich und nach wenigen Minuten reversibel“, sagt Strang. Wenn die Diktatoren mit gehemmter Gehirnregion an die Verteilung der Geldbeträge gingen, war das Ergebnis deutlich: Sie handelten egoistischer und waren schlechter darin, ihr Verhalten den drohenden Sanktionen anzupassen, als wenn der dorsolaterale präfrontale Kortex aktiv war.

Egoistisches Handeln wider besseres Wissen

„Obwohl die Probanden genau wussten, dass ihr unfaires Verhalten zu einer Geldstrafe führen würde, konnten sie offensichtlich aufgrund der eingeschränkten Aktivität der Hirnstruktur nicht mit angemessenen Strategien reagieren“, sagt Prof. Weber von der Universität Bonn. Es sei ganz erstaunlich, dass sich ein solch komplexes Verhalten möglicherweise auf eine einzige Gehirnstruktur zurückführen lässt. Normgeleitetes Verhalten sei eine wichtige Voraussetzung für funktionierende Gesellschaften, der dorsolaterale präfrontale Kortex sei ein Schlüssel dazu, so die Forscher. „Es gibt allerdings noch keine Möglichkeit, die Gehirnstruktur bei einer Unterfunktion langfristig zu steigern, um faires Verhalten zu befördern“, sagt Prof. Weber.

Publikation: Be Nice if You Have to – The Neurobiological Roots of Strategic Fairness, “Social Cognitive and Affective Neuroscience”, DOI: 10.1093/scan/nsu114


Kontakt für die Medien:

Sabrina Strang
Center for Economics and Neuroscience (CENs)
der Universität Bonn
Tel. 0228/738286
E-Mail: strang@uni-bonn.de

Prof. Dr. Bernd Weber
Center for Economics and Neuroscience (CENs)
der Universität Bonn
Klinik für Epileptologie
Tel: 0228/6885-262 oder 6885-260 (Sekretariat)
E-Mail: bernd.weber@ukb.uni-bonn.de

Weitere Informationen:

http://www.cens.uni-bonn.de Informationen zum CENs

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik