Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Gehirn erinnert sich fehlender Gliedmaßen

13.09.2012
Schmerzforscher der Uni Jena finden anatomische Veränderungen im Gehirn von Amputierten

Phantomschmerzen können Patienten das Leben zur Hölle machen. Nahezu jeder Patient berichtet nach einer Amputation von sogenannten Phantomsensationen. Diese Empfindungen können von leichter Intensität sein, etwa in Form von Wetterfühligkeit, aber auch so heftig, dass manche Patienten als letzten Ausweg den Suizid in Erwägung ziehen.


Eine Handprothese mit "Rückmeldemechanismus" haben Wissenschaftler der Universität Jena entwickelt. Nun konnten sie zudem anatomische Veränderungen im Gehirn von amputierten Patienten feststellen. Foto: Jan-Peter Kasper/FSU

Es handele sich keineswegs um ein singuläres Phänomen, sagt Prof. Dr. Thomas Weiß von der Universität Jena. Immerhin verlieren in Deutschland jedes Jahr etwa 100 000 Menschen Gliedmaßen durch Amputation. Ursachen sind Unfälle, Krebs oder Stoffwechselerkrankungen wie Diabetes.

Weiß leitet eine interdisziplinäre Arbeitsgruppe zur Erforschung von Phantomschmerzen am Lehrstuhl für Biologische und Klinische Psychologie von Prof. Dr. Wolfgang H. R. Miltner. In einem gerade beendeten Projekt hat die Arbeitsgruppe untersucht, ob es anatomische Veränderungen im Gehirn von Amputierten gibt. „Wir konnten zeigen, dass nach einer Amputation das Volumen in Kortexarealen zunimmt, die dem dorsalen und ventralen visuellen Pfaden zugerechnet werden“, sagt Dr. Sandra Preißler von der Arbeitsgruppe um Prof. Weiß. Erklären lässt sich dieser Befund mit der Tatsache, dass Patienten mit einer Prothese bestimmte Bewegungsabläufe visuell kontrollieren bzw. steuern müssen, die ein gesunder Mensch automatisiert verrichtet. Interessanterweise fällt diese Volumenzunahme bei Patienten mit starken Phantomschmerzen geringer aus, sagt Preißler. Thomas Weiß vermutet einen Zusammenhang mit der Prothesennutzung: „Patienten, die ihre Prothese oft tragen und benutzen, trainieren zugleich die für das Visuelle zuständigen Hirnareale.“
Insgesamt 28 Patienten nahmen an der Studie teil. Darunter waren Schmerzpatienten und Patienten mit leichten oder ohne Beschwerden. Die Gehirnscans wurden per hochauflösendem Magnet-Resonanz-Tomographen erstellt.
Wie Prof. Weiß erläutert, konnten die Jenaer Wissenschaftler auch nachweisen, dass die durch den Verlust einer Hand oder eines Armes freiwerdenden Hirnareale von ihren Nachbarstrukturen „erobert“ werden. Offensichtlich greife hier jener evolutionäre Effekt, der beispielsweise die Steuerungs-Areale der Spielhand von Violinisten wachsen lässt. Sandra Preißler, die gemeinsam mit Johanna Feiler für die Hirn-Scans der Probanden verantwortlich zeichnete, hat ein anschauliches Bild für dieses Phänomen gefunden: „Es ist zu vergleichen mit einer Wiese, die nicht mehr gepflegt und nun von den umgebenden Gebüschen zurückerobert wird.“ Thomas Weiß konstatiert, dass dieser Effekt ein Beleg für die hohe Dynamik des Systems Gehirn ist. Noch sei keine therapeutische Relevanz der Forschungsergebnisse gegeben, sagt Weiß. Doch die Forschung geht weiter.

Gefördert von der Deutschen Gesetzlichen Unfallversicherung wollen die Jenaer Wissenschaftler in ihrer aktuellen Studie Bein- und Fußamputierte einbeziehen. Gesucht werden Patienten, die möglichst aus der Region kommen. Interessierte können sich bei Dr. Sandra Preißler anmelden, Telefon 03641 945157, s.preissler[at]uni-jena.de.
Kontakt:
Prof. Dr. Thomas Weiß / Dr. Sandra Preißler
Institut für Psychologie der Friedrich-Schiller-Universität Jena
Am Steiger 3 / Haus 1, 07743 Jena
Tel.: 03641 / 945143, 945157
E-Mail: thomas.weiss[at]uni-jena.de, s.preissler[at]uni-jena.de

Stephan Laudien | Friedrich-Schiller-Universität J
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics