Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefürchteter Gleichtakt im Gehirn

10.05.2012
Wissenschaftler des Universitätsklinikums Bonn haben einen Mechanismus entdeckt, der beim Auftreten von epileptischen Anfällen beteiligt sein könnte.

Der Transkriptionsfaktor „Egr1“ regelt die Calcium-Kanäle in den Nervenzellen hoch und fördert damit die Ausbildung des Gleichtakts im Gehirn, der zu den Krampfleiden führt. Die Forscher stellen ihre Ergebnisse nun im Journal of Biological Chemistry vor.

Bei einem epileptischen Anfall feuern die Nervenzellen im Gehirn quasi im Gleichschritt und lösen damit die spontan auftretenden Krämpfe aus. Etwa jeder 20. Mensch erleidet in seinem Leben mindestens einen epileptischen Anfall. „Häufig lösen vorangegangene Verletzungen des Gehirns – etwa durch einen Unfall, Infektionen oder Fieberschübe – diese plötzlichen Krämpfe aus“, sagt Prof. Dr. Albert Becker vom Institut für Neuropathologie der Universität Bonn und Letztautor der Studie. Wie kommt es aber in einem gesunden Gehirn plötzlich zum Auftreten von Epilepsien? Einer Antwort auf diese Frage sind Neuropathologen und Epileptologen des Bonner Universitätsklinikums zusammen mit ihren Kollegen von der Hebrew Universität in Israel nun ein Stück näher gekommen.

Calcium-Kanäle übernehmen die Rolle der Torwächter

Schon länger ist bekannt, dass an der Signalweiterleitung in den Nervenzellen des Gehirns sogenannte Calcium-Kanäle beteiligt sind. Diese porenartigen Strukturen sind so etwas wie Torwächter, die den Zutritt von Calcium-Ionen in die Nervenzelle regulieren. Damit wird auch die elektrische Erregung der Gehirnzellen gesteuert – wenn sie sich im Takt synchronisiert, steigt die Gefahr für einen epileptischen Anfall. Die Bonner Forscher haben nun entdeckt, dass der Transkriptionsfaktor „Egr1“ (transcription factor early growth response 1) wie ein Schalter die Calcium-Kanäle in den Nervenzellen hoch reguliert und damit die Signalübertragung in den Gehirnzellen aktiviert. Umgekehrt wirkt der Transkriptionsfaktor „REST“ (repressor element 1-silencing transcription factor) dämpfend auf die Calcium-Kanäle und damit die Erregung der Nervenzellen.

Transkriptionsfaktoren bewirken das Auslesen eines speziellen Bereichs des Erbguts in der DNA und die Weitergabe der darin enthaltenen Befehle an die Zellen, die dann auf diese Botschaften reagieren. „Mit den Transkriptionsfaktoren Egr1 und REST haben wir einen Schalter für die Calcium-Kanäle identifiziert, der die elektrische Erregung in den Nervenzellen fördern und auch hemmen kann“, sagt Erstautorin Dr. Karen van Loo. Die Calcium-Kanäle reagieren bereits auf kleine Änderungen der elektrischen Signale und modifzieren dadurch die Erregungsmuster im Gehirn – bei einer Epilepsie bis hin zum Gleichschritt.

Nervenzellen feuern wie ein Maschinengewehr

„Die Vorgänge, die im Gehirn bei der Signalübertragung auftreten, lassen sich mit einer Telefonanlage vergleichen“, sagt der Neuropathologe. Normalerweise werden die Impulse wie in einer Telefonleitung einfach von Nervenzelle zu Nervenzelle weitergegeben. Bei einem epileptischen Anfall feuern die Nervenzellen dagegen plötzlich wie ein Maschinengewehr viele Signale ab und stören damit die Kommunikation im Gehirn. „Der Transkriptionsfaktor Egr1 ist in der Lage, die Calcium-Kanäle bis hin zu einem chronischen epileptischen Anfall hoch zu regulieren“, berichtet Prof. Becker.

Die Wissenschaftler führten die Untersuchungen an Zellkulturen und in den Gehirnen von Mäusen durch. Dabei wurden die Transkriptionsfaktoren in Zellkulturen und in Mausgehirnen stark erhöht und damit die darin enthaltenen Botschaften verstärkt. Anschließend bestimmten die Forscher den Einfluss auf die Menge entsprechender Calciumkanäle. Nun hoffen die Forscher, dass sich die Ergebnisse auch auf den Menschen übertragen lassen. „Die Resultate unserer Studie haben für die Behandlung von Epilepsien eine große Relevanz“, berichtet Dr. Becker. Die Wissenschaftler wollen den nun entschlüsselten Mechanismus nutzen, um Medikamente zu entwickeln, die bereits im Vorfeld die Entwicklung chronischer Epilepsien verhindern können.

Publikation: Transcriptional regulation of the T-type calcium channel Cav3.2: bi-directionality by early growth response 1 (Egr1) and RE1-silencing transcription factor (REST), Journal of Biological Chemistry, 287:15489-15501

Kontakt:

Prof. Dr. Albert Becker
Institut für Neuropathologie
Tel.: 0228/287 11352
E-Mail: albert_becker@uni-bonn.de
Dr. Karen M. J. van Loo
Institut für Neuropathologie
Tel.: 0228/287 19346
E-Mail: karen.van_loo@ukb.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de
http://www.ncbi.nlm.nih.gov/pubmed/22431737
http://www3.uni-bonn.de/Pressemitteilungen/118-2012

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein
02.12.2016 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Epstein-Barr-Virus: von harmlos bis folgenschwer
30.11.2016 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten