Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Gedächtnisschwund rückgängig machen

01.03.2012
Resultate aus Tierversuchen zeigen neuen Weg zur Bekämpfung von Alzheimer auf

Die Nervenzellen in einem von Alzheimer betroffenen Gehirn leisten im Verlauf der Zeit immer weniger. Zurückzuführen ist dieser Leistungsabfall auf Mechanismen, die grundsätzlich reversibel sind. Zu diesem Schluss gelangt eine vom Schweizerischen Nationalfonds unterstützte Studie.

Ungefähr ein bis zwei Prozent der über 65-jährigen Bevölkerung – etwa 110‘000 Menschen in der Schweiz – leiden an der Alzheimer-Krankheit. Sie zählt zur häufigsten Form der Demenz und soll in den kommenden Jahrzehnten sogar doppelt so viele Personen in der westlichen Welt betreffen.

Im Gehirn von Alzheimer-Patienten sammeln sich Eiweissablagerungen an, die den Hirnzellen schaden und schliesslich zu deren Tod führen können. Doch schon bevor die Hirnzellen absterben, macht sich der schleichende Zerfall ihrer Funktionen bemerkbar.

In der harschen Umgebung eines degenerierenden Gehirns schalten Hirnzellen diejenigen Gene aus, die bei Lern- und Gedächtnisprozessen eine wichtige Rolle spielen. Diese Inaktivierung beruht auf sogenannten epigenetischen Prozessen, die grundsätzlich reversibel sind, wie der Schweizer Forscher und SNF-Stipendiat Johannes Gräff und seine Kolleginnen und Kollegen vom Massachusetts Institute of Technology in der neuesten Ausgabe von «Nature» berichten (*).

Kompakt verpackt

Die Forschenden weisen nach, dass das Eiweiss HDAC2 – Histon-Deacetylase 2 – in Hirnzellen von Mäusen, die gentechnisch dahingehend verändert wurden, dass sie ein der menschlichen Alzheimer-Krankheit verwandtes Leiden entwickeln, häufiger vorkommt als in Hirnzellen gesunder Mäuse. HDAC2 entfernt kleine Moleküle von wichtigen Struktureiweissen, den sogenannten Histonen, um die das Erbgut im Zellkern gewickelt ist. Dadurch sorgt HDAC2 in den Hirnzellen der «Alzheimer-Mäuse» dafür, dass das Erbgut in der Region der Lern- und Gedächtnisgene kompakter verpackt und deshalb weniger zugänglich und aktiv ist als in den Hirnzellen gesunder Mäuse.

Gräff und Kollegen haben mit gentechnischen Methoden die Menge des HDAC2-Eiweisses in den «Alzheimer-Mäusen» reduziert – und brachten dadurch die zuvor beobachteten Lerndefizite dieser Mäuse zum Verschwinden. Mäuse mit weniger HDAC2 erinnerten sich etwa besser an den Ort einer in einem trüben Wasserbecken versteckten Plattform.

Spezifischer Wirkstoff

Beim Menschen scheint HDAC2 eine ähnliche Rolle zu spielen. Durch den Vergleich von Hirnbiopsien haben die Forschenden festgestellt, dass sich im Gehirn von verstorbenen Alzheimer-Patienten mehr von diesem Eiweiss finden lässt als im Gehirn von Toten, die nicht an Alzheimer litten. «Zudem sind alle im Mäusehirn untersuchten Lern- und Gedächtnisgene auch im Gehirn von Alzheimer-Patienten inaktiv», sagt Gräff.

Den bei den Mäusen verwendeten gentechnischen Trick zur HDAC2-Reduktion können die Forschenden nicht auf den Menschen übertragen. Hier setzen sie auf sogenannte HDAC-Inhibitoren: Medikamente, die HDAC2 hemmen sollen. Zwar kenne man schon eine Reihe solcher Wirkstoffe, das Problem aber sei, dass sie auch die anderen Histon-Deacetylasen beeinträchtigten, sagt Gräff.

Nun geht es den Forschenden darum, einen spezifischen Wirkstoff zu entwickeln, der nur die Wirkung von HDAC2 unterbindet, und schliesslich diesen klinisch zu testen. Doch Gräff relativiert: «Auch wenn es uns gelingt, die epigenetische Blockade im menschlichen Hirn medikamentös zu lösen – damit bekämpfen wir die Folgen, nicht die Ursachen der Krankheit.»

(*) Johannes Gräff, Damien Rei, Ji-Song Guan, Wen-Yuan Wang, Jinsoo Seo, Krista M. Hennig, Thomas J. F. Nieland, Daniel M. Fass, Patricia F. Kao, Martin Kahn, Susan C. Su, Alireza Samiei, Nadine Joseph, Stephen J. Haggarty, Ivana Delalle and Li-Huei Tsai (2012). An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature online: doi: 10.1038/nature10849

(als PDF beim SNF erhältlich; E-Mail: com@snf.ch)

Kontakt
Dr. Johannes Gräff
Picower Institute for Learning and Memory
Massachusetts Institute of Technology MIT
43, Vassar Street
US-Cambridge, MA 02139
Tel.: +1 617 324 16 45
+1 617 784 05 79
E-Mail: jgraeff@mit.edu

Kathrin Sterchi | idw
Weitere Informationen:
http://www.snf.ch

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Mikrobiologen entwickeln Methode zur beschleunigten Bestimmung von Antibiotikaresistenzen
13.02.2018 | Westfälische Wilhelms-Universität Münster

nachricht Überschreiben oder Speichern? Die Gewissensfrage zur Vergesslichkeit
13.02.2018 | PhytoDoc Ltd.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics