Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

G-Proteine steuern Umbau von Blutgefäßen

07.11.2012
Max-Planck-Forscher untersuchen Signalwege, über die die glatten Muskelzellen der Blutgefäße auf Veränderungen von außen reagieren

Blutgefäße sind äußerst dynamisch: Ihre Durchlässigkeit für Nährstoffe, ihre Kontraktionskraft, aber auch ihre Form passen sich jeweils an die äußeren Bedingungen an.


Querschnitt durch ein Blutgefäß einer normalen Maus (links) und einer Maus ohne G12/G13-Proteine (rechts). In der genetisch veränderten Maus vermehren sich die Muskelzellen der Gefäßwand exzessiv und behindern dadurch den Blutstrom.

© Max-Planck-Institut für Herz- und Lungenforschung

Anders als beispielsweise Herzmuskelzellen zeichnen sich die glatten Muskelzellen der Gefäße durch eine hohe Plastizität aus, sie können sich also je nach Bedarf entweder spezialisieren oder vermehren und damit zum Beispiel auch eine Verletzung der Gefäßwand reparieren. Dieser Gefäßumbau ist offensichtlich genauestens reguliert. Störungen spielen bei Erkrankungen wie Arteriosklerose oder Bluthochdruck eine wichtige Rolle.

Am Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim haben Wissenschaftler in Versuchen mit genetisch veränderten Mäusen herausgefunden, wie Signale von außen den Gefäßumbau in den Zellen steuern. Entstanden ist dabei ein ganz neues Bild der Regulation, das auch den Weg für neue Ansätze in Prophylaxe und Therapie der Arteriosklerose oder anderer Gefäßerkrankungen öffnen könnte.

Die Wand von Blutgefäßen besteht aus glatten Muskelzellen, elastischen Fasern und sogenannten Endothelzellen, die das Blutgefäß von innen auskleiden. Je nach Bedarf verändern die Gefäße ihre Durchlässigkeit und ihre Kontraktionskraft. Bei Verletzungen können neue spezialisierte Muskelzellen entstehen und ein Gefäß reparieren. Diese notwendige und nützliche Plastizität der Zellen kann auf der anderen Seite im Fall einer Erkrankung negative Folgen haben. So können sich beispielsweise Herzkranzgefäße, die bei einem Katheter-Eingriff durch Erweiterung und Stents geöffnet wurden, anschließend durch das Wachstum von Muskelzellen erneut verengen.

Auch bei der weit verbreiteten Arteriosklerose oder Gefäßverkalkung führen Umbauprozesse zu den gefürchteten Plaques. Reguliert werden all diese Vorgänge von Hormonen oder Neurotransmittern, die unter anderem von Zellen und Nerven der Gefäßwand freigesetzt werden. Die meisten dieser gefäßaktiven Botenstoffe wirken über Rezeptoren, die nach Aktivierung an sogenannte G-Proteine binden. Diese sind an der Innenseite der Zellmembran lokalisiert und leiten das Signal von dort in das Zellinnere weiter.

„Es sind zwei unterschiedliche G-Protein-Familien, die beim Gefäßumbau eine entscheidende Rolle spielen: Wir nennen sie nach ihren Proteinkomponenten Gq/G11 und G12/G13“, erklärt der Max-Planck-Wissenschaftler Stefan Offermanns, der sich seit Jahren mit diesen Proteinen und ihren molekularen Signalwegen beschäftigt. In der aktuellen Studie an genetisch veränderten Mäusen konnte sein Team erstmals zeigen, wie diese zwei Signalwege im lebenden Tier durch Botenstoffe reguliert werden.
„Anders als erwartet regulieren die beiden G-Protein-gekoppelten Wege die Plastizität glatter Muskelzellen in entgegengesetzter Richtung“, fasst Offermanns seine Ergebnisse zusammen. Überraschend ist das insofern, als diese Signalwege in anderem Zusammenhang zusammenspielen: Reize, die die Gefäßkontraktion fördern und damit den Blutdruck erhöhen, aktivieren beide Signalwege parallel.

Um die Signalwege und ihre Regulation verfolgen zu können, hat Till Althoff, der Leiter der Studie, Mäuse untersucht, in denen er die Gene für die verschiedenen G-Proteine gezielt inaktiviert hat. In einer an Arteriosklerose erkrankten Maus konnte der Forscher so beispielsweise zeigen, dass sich die spezialisierten Zellen bei Fehlen von G12/G13 in den glatten Muskelzellen rückbilden und exzessiv zu wachsen beginnen – die Folge war eine stark verdickte Gefäßwand. Tiere mit einem Mangel an Gq/G11-Protein hingegen waren gegen diese Zellwandverdickung geschützt.

„Wir sehen hier deutlich, dass die beiden Signalwege beim Gefäßumbau als Gegenspieler wirken“, erklärt Offermanns die Ergebnisse. Was durchaus sinnvoll ist, denn nur so kann man ein System Auf- und Abbau im Gleichgewicht halten. In weiteren Untersuchungen zeigten die Wissenschaftler außerdem, über welche Stufen die beiden Wege ihr Ziel erreichen und im Zellkern die Gene für die Bildung spezialisierter Zellen oder das Zellwachstum ankurbeln.

„Unsere Ergebnisse enthüllen tatsächlich ein ganz neues Bild von der Regulation des Gefäßumbaus, auch bei pathologischen Prozessen“, betont Offermanns. Dies lässt auf neue pharmakologische Ansätze hoffen. So kann der Wissenschaftler sich gut vorstellen, dass man die Plastizität im Rahmen von Gefäßerkrankungen wie Arteriosklerose oder nach kardiologischen Interventionen mit Medikamenten moduliert. Die Zielstrukturen in den beiden Signalwegen sind nun bekannt und zeigen neue Wege auf. So könnte der wachstumsfördernde Weg gehemmt und gleichzeitig der stabilisierende Weg aktiviert werden, um so den Umbauprozess abzubremsen. „Im Tiermodell erproben wir bereits neue therapeutische Ansätze zur Vorbeugung einer Arteriosklerose oder zur Unterdrückung des Zellwachstums in Gefäßen nach einer Verletzung“, berichtet Offermanns.

Ansprechpartner

Prof. Dr. Stefan Offermanns
Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim
Telefon: +49 6032 705-1202
Fax: +49 6032 705-1204
Email: stefan.offermanns@­mpi-bn.mpg.de
Dr. Matthias Heil
Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim
Telefon: +49 6032 705-1705
Fax: +49 6032 705-1704
Email: matthias.heil@­mpi-bn.mpg.de
Originalpublikation
Till F. Althoff, Julián Albarrán Juárez, Kerstin Troidl, Cong Tang, Shengpeng Wang, Angela Wirth, Mikito Takefuji, Nina Wettschureck, Stefan Offermanns
Procontractile G protein-mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling

J. Exp. Med. 2012, online veröffentlicht 5. November 2012 DOI: 10.1084/jem.20120350

Prof. Dr. Stefan Offermanns | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6611329/signalwege-blutgefaesse

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Therapieansatz: Kombination von Neuroroboter und Hirnstimulation aktiviert ungenutzte Nervenbahnen
16.01.2018 | Universitätsklinikum Tübingen

nachricht Europäisches Forschungsteam trickst Ebolavirus aus
16.01.2018 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften