Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fortschritt bei der Bekämpfung von fortschreitender Lähmung

04.02.2014
FAU-Forschern gelingt Neuentdeckung mit Hilfe von patienteneigenen Stammzellen

Es fängt manchmal schon im Kindes- oder frühen Erwachsenenalter an, mit Unsicherheit beim Gehen und einem Schwächegefühl in den Beinen. Im Laufe der Zeit versagen die Beine noch mehr und der Patient ist auf einen Rollstuhl angewiesen.

Die erbliche Querschnittslähmung (Spastische Paraplegie) ist von ihren Ursachen her bis heute nicht therapierbar. Einen bedeutenden Schritt, dies zu ändern, hat die Nachwuchsgruppe III des Interdisziplinären Zentrums für Klinische Forschung (IZKF,)/ BMBF Forschungsgruppe Neurowissenschaften (Prof. Dr. B. Winner) mit Hilfe eines Stipendiums der Tom-Wahlig Stiftung für Hereditäre Spastische Paraplegie (HSP) nun getan.

Die HSP wird den Erkrankten in die Wiege gelegt, denn ihre Ursache ist häufig eine erbliche Veränderung bestimmter Gene. Die häufigste Form rührt von einer Mutation des SPG4 Gens her, das für die Bildung des Proteins Spastin zuständig ist. Im Zuge eines Forschungsprojektes wurde betroffenen Patienten in der Abteilung für Molekulare Neurologie des Universitätsklinikums sowie gesunden Personen eine kleine Hautbiopsie am Oberarm entnommen. Diese Hautzellen wurden in Kultur gebracht und dann in pluripotente Stammzellen umgewandelt, die sich zu jedem beliebigem Zelltyp entwickeln können.

Diese pluripotenten Stammzellen differenzierte das Forschungsteam weiter zu patienteneigenen Nervenzellen aus. Beim Vergleich von gesunden und erkrankten Nervenzellen stellten sie fest, dass bei den kranken Zellen die Fortsätze verkürzt und weniger verzweigt sind als bei den Gesunden. Zusätzlich war auch der Transport von bestimmten kleinen Organellen der Zellen, den Mitochondrien, eingeschränkt, was die Nervenzellen auf Dauer beeinträchtigt. Den an HSP erkrankten Zellen fehlt das Protein Spastin, das für die Zellteilung und die Stabilität von Nervenfortsätzen eine wichtige Rolle spielt. Die Wissenschaftler konnten die erkrankten Nervenzellen durch Einbringung einer zusätzlichen Kopie des „gesunden“ SPG4 Gens in die Zellen „heilen“.

Auch wenn dieses Vorgehen nicht unmittelbar therapeutisch genutzt werden kann, so ist es den Wissenschaftlern erstmals gelungen, die Krankheit im Labor an patienteneigenen Nervenzellen zu untersuchen. „Wir hoffen, dass durch die Etablierung solcher Krankheitsmodelle auf der Basis menschlicher Zellen neue Substanzen getestet und entdeckt werden und somit unseren Patienten geholfen werden kann“ so Prof. Dr. B. Winner, Leiterin der Nachwuchsforschungsgruppe III des IZKF.

Beteiligt am Forschungsprojekt, das von Steven Havlicek, Doktorand der Arbeitsgruppe federführend durchgeführt wurde, waren neben dem IZKF Einrichtungen des Universitätsklinikums und der Friedrich-Alexander-Universität Erlangen-Nürnberg (Prof. J. Winkler, Prof. A. Lampert, Prof. U. Schlötzer-Schrehardt), das Salk Institute for Biological Studies in La Jolla, Kalifornien.

Weitere Informationen:

Prof. Dr. Beate Winner
Telefon: 09131-85-39301
E-mail: beate.winner@med.uni-erlangen.de

Thomas Hoffmann | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Berichte zu: HSP IZKF Lähmung Nervenzelle Paraplegie Protein SPG4 Spastin Stammzelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein
02.12.2016 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Epstein-Barr-Virus: von harmlos bis folgenschwer
30.11.2016 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten