Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher stimulieren Kehlkopfmuskeln mit Licht

03.06.2015

Medizinern der Universität Bonn ist es gelungen, die Kehlkopfmuskeln einer Maus mit Licht zu stimulieren. Möglicherweise ist es mit dieser Methode mittelfristig möglich, Kehlkopflähmungen beim Menschen zu therapieren. Diese können beispielsweise nach Schilddrüsen-Operationen auftreten und zu Problemen beim Sprechen sowie schwerer Atemnot führen. Die Ergebnisse erscheinen in dem renommierten Fachjournal „Nature Communications“.

Muskeln reagieren auf Nervenimpulse, indem sie sich zusammenziehen. Durch Licht lässt sich diese Kontraktion normalerweise nicht auslösen. Vor einigen Jahrzehnten wurde jedoch in Grünalgen eine exotische Molekülgruppe entdeckt, die so genannten Kanal-Rhodopsine.


Dr. Tobias Brügmann, Juniorprofessor Dr. Philipp Sasse und Dr. Tobias van Bremen (von links) demonstrieren mit dem Lichtleiter das Funktionsprinzip.

Foto: Claudia Siebenhüner/Universitätsklinikum Bonn

Kanal-Rhodopsine sind Schleusen für elektrisch geladene Teilchen, die sich bei Beleuchtung öffnen. Wenn man Kanal-Rhodopsine geeignet verpackt und in einen Muskel injiziert, werden sie in die einzelnen Muskelzellen eingebaut. Sobald man eine solche Zelle nun mit Licht reizt, öffnen sich die Kanäle. Es strömen positiv geladene Ionen in die Muskelzelle, die so zur Kontraktion angeregt wird.

Dieses Funktionsprinzip ist schon seit einigen Jahren bekannt. Bereits 2010 hat die Bonner Arbeitsgruppe mit derselben Methode die Herzmuskulatur von Mäusen stimuliert. Kehlkopfmuskeln zählen jedoch zur Skelettmuskulatur.

„Und für Skelettmuskeln gelten andere Gesetze“, betont der Leiter der Studie Juniorprofessor Dr. Philipp Sasse. So lässt sich in der Skelettmuskulatur jede Zelle separat zur Kontraktion anregen. Auf diese Weise kann der Körper die ausgeübte Muskelkraft sehr fein steuern. Skelettmuskeln können zudem – anders als der Herzmuskel – auch Haltearbeit leisten: Werden sie sehr schnell hintereinander immer wieder gereizt, bleiben sie kontrahiert.

„Wir haben nun erstmals zeigen können, dass wir durch Lichtpulse ebenfalls eine dauerhafte Kontraktion auslösen können“, sagt Dr. Tobias Brügmann, Erstautor der Studie. „Je nachdem, wohin wir den Lichtstrahl richten, können wir zudem einzelne Muskelgruppen reizen – genauso, wie es der Körper über die Nerven macht.“

Neue therapeutische Möglichkeiten

Damit weist die Methode möglicherweise auch den Weg zu neuen Therapieansätzen. Profitieren könnten in einigen Jahren etwa Menschen mit einer Kehlkopflähmung. Zu dieser Störung kann es zum Beispiel nach Schilddrüsen-Operationen kommen, wenn durch den Eingriff die Kehlkopfnerven verletzt wurden. Der Kehlkopf übernimmt wichtige Funktionen beim Sprechen und Schlucken, vor allem aber beim Luftholen: Die Kehlkopfmuskeln ziehen beim Atmen die Stimmlippen auseinander, so dass die Luft in die Lunge einströmen kann. Bei einer vollständigen Lähmung können die Betroffenen nicht mehr atmen.

Durch Verkabelung mit einem elektrischen Stimulator lässt sich die Kehlkopfmuskel-Funktion leider meist nicht wiederherstellen. „Dazu gibt es dort auf engem Raum zu viele verschiedene Muskeln“, erläutert der Hals-Nasen-Ohren-Arzt Dr. Tobias van Bremen, einer der Ko-Autoren der Studie. „Sie gezielt einzeln elektrisch zu stimulieren, ist so gut wie unmöglich.“ Die Beleuchtungs-Methode ist ein ganz neuer, viel versprechender Ansatz. Im Tierversuch haben die Bonner Mediziner bereits zeigen können, dass es tatsächlich funktioniert: Bei Mäuse-Kehlköpfen konnten sie durch Beleuchtung gezielt den Luftkanal öffnen.

Ob das dereinst beim Menschen ebenfalls funktionieren wird, ist noch offen. Im Nächsten Schritt wollen die Bonner Forscher einen optischen Stimulator des Kehlkopfs an lebenden Schweinen erproben.

Publikation: Tobias Bruegmann, Tobias van Bremen, Christoph C. Vogt, Thorsten Send, Bernd K. Fleischmann & Philipp Sasse: Optogenetic control of contractile function in skeletal muscle; Nature Communications, Datum, DOI: 10.1038/ncomms8153

Kontakt für die Medien:

Prof. Dr. Philipp Sasse
Institut für Physiologie I, Universität Bonn
Tel. 0228/6885212
E-Mail: philipp.sasse@uni-bonn.de

Dr. Tobias Brügmann
Institut für Physiologie I, Universität Bonn
Tel. 0228/6885217
E-Mail: tbruegmann@uni-bonn.de

Dr. Tobias van Bremen
Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde/Chirurgie
Universitätsklinikum Bonn
Tel. 0228/28715556
E-Mail: Tobias.Vanbremen@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten