Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher um Oliver Brüstle entschlüsseln rätselhafte Bewegungsstörung

24.11.2011
Neurodegenerative Erkrankungen stellen eine der größten Herausforderungen unserer alternden Gesellschaft dar. Die Erforschung dieser Krankheiten wird aber wegen der eingeschränkten Verfügbarkeit von menschlichem Gehirngewebe besonders erschwert.

Wissenschaftler des Forschungszentrums Life & Brain und der Klinik für Neurologie der Universität Bonn haben nun einen Umweg genommen: Sie reprogrammierten Hautzellen von Patienten mit einer erblichen Bewegungsstörung in so genannte induziert pluripotente Stammzellen (iPS-Zellen) und gewannen daraus funktionierende Nervenzellen. Daran entschlüsselten sie, wie die Krankheit entsteht. Ihre Ergebnisse erscheinen nun in der Fachzeitschrift „Nature“.

Im Zentrum der aktuellen Bonner Studie steht die so genannte Machado-Joseph-Erkrankung. Dabei handelt es sich um eine Störung der Bewegungskoordination, die ursprünglich bei portugiesischstämmigen Bewohnern der Azoren beschrieben wurde und heute die häufigste dominant vererbte Kleinhirn-Ataxie in Deutschland darstellt. Die Mehrzahl der Patienten entwickelt zwischen dem 20. und 40. Lebensjahr Gangstörungen und eine Reihe anderer neurologischer Symptome. Ursache der Erkrankung ist eine sich wiederholende Erbgutsequenz im Ataxin-3-Gen, die zur Verklumpung des entsprechenden Proteins führt, wodurch schließlich die Nervenzellen im Gehirn geschädigt werden. Unklar war bislang, warum die Erkrankung nur Nervenzellen betrifft und wie die abnorme Proteinverklumpung ausgelöst wird.

„Alleskönner“ aus Hautproben von Patienten

Um den Krankheitsprozess auf molekularer Ebene zu studieren, stellten Wissenschaftler um den Stammzellforscher Prof. Dr. Oliver Brüstle am Institut für Rekonstruktive Neurobiologie der Universität Bonn zunächst aus kleinen Hautproben von Patienten so genannte induziert pluripotente Stammzellen (iPS-Zellen) her. Es handelt sich dabei um Zellen, die in ein sehr frühes, undifferenziertes Stadium zurückversetzt werden. Diese „Alleskönner“ lassen sich – einmal gewonnen – nahezu uneingeschränkt vermehren und in alle Körperzellen ausreifen. In einem nächsten Schritt wandelte das Team um Prof. Brüstle die iPS-Zellen in Gehirnstammzellen um, aus denen die Wissenschaftler beliebig Nervenzellen für ihre Untersuchungen entwickeln konnten.

Das Besondere: Da die Nervenzellen aus den Patienten selbst stammen, tragen sie dieselben genetischen Veränderungen und können so als zelluläres Modell der Erkrankung dienen. „Diese Methode erlaubt uns die Erforschung der Erkrankung an den wirklich betroffenen Zellen, zu denen wir sonst keinen Zugang hätten - fast so, als hätten wir das Gehirn des Patienten in die Zellkulturschale gebracht“, sagt Dr. Philipp Koch, langjähriger Mitarbeiter von Prof. Brüstle und einer der Erstautoren der Studie. Zusammen mit seinem Kollegen Dr. Peter Breuer von der Klinik und Poliklinik für Neurologie des Bonner Universitätsklinikums stimulierte Koch elektrisch die künstlich geschaffenen Nervenzellen. Dabei konnten die Forscher zeigen, dass die Bildung der Proteinaggregate unmittelbar mit der elektrischen Aktivität der Nervenzellen zusammenhängt. „Eine Schlüsselrolle spielt dabei das Enzym Calpain, das durch den erhöhten Kalziumgehalt stimulierter Nervenzellen aktiviert wird“, so der Biochemiker Breuer. „Dieser neu identifizierte Mechanismus erklärt, warum die Erkrankung ausschließlich Nervenzellen betrifft“, betont Prof. Brüstle.

Reprogrammierte Nervenzellen als Studienobjekt für Medikamente

„Die Studie verdeutlicht, welches Potential diese spezielle Art der Stammzellen für die neurologische Krankheitsforschung hat“, sagt Prof. Dr. Thomas Klockgether, Klinischer Direktor des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) und Direktor der Bonner Universitätsklinik für Neurologie, dessen Team in dieser Studie eng mit den Wissenschaftlern um Prof. Brüstle zusammenarbeitete. Für Prof. Brüstle Grund genug, bereits über neue Strukturen nachzudenken: „Wir brauchen interdisziplinäre Abteilungen, in denen Wissenschaftler aus der Stammzellbiologie und der molekularen Krankheitsforschung Seite an Seite zusammenarbeiten.“ Prof. Dr. Dr. Pierluigi Nicotera, wissenschaftlicher Vorstand und Vorstandsvorsitzender des DZNE, pflichtet ihm bei: „Das DZNE hat großes Interesse an Kooperationsstrukturen. Denn reprogrammierte Stammzellen weisen für das Verständnis der Pathologie neurodegenerativer Erkrankungen ein enormes Potenzial auf.“

In einem nächsten Schritt wollen Prof. Brüstle und seine Kollegen von Life & Brain reprogrammierte Nervenzellen für die Entwicklung von Wirkstoffen zur Behandlung neurologischer Erkrankungen einsetzen.

Publikation: Koch, P., Breuer, P., Peitz, M., Jungverdorben, J., Kesavan, J., Poppe, D., Doerr, J., Ladewig, J., Mertens, J., Tüting, T., Hoffmann, P., Klockgether, T., Evert, B.O., Wüllner, U., Brüstle, O. (2011) Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature doi:10.1038/nature10671

Kontakt:

Prof. Dr. Oliver Brüstle
Institut für Rekonstruktive Neurobiologie
LIFE & BRAIN Center
Universität Bonn
Telefon: +49-228-6885-500
E-Mail: brustle@uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www3.uni-bonn.de/Pressemitteilungen/324-2011

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein
02.12.2016 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Epstein-Barr-Virus: von harmlos bis folgenschwer
30.11.2016 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie