Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fluorid reduziert Haftkraft von Bakterien an Zähnen

25.04.2013
Dass regelmäßiges Zähneputzen Karies vorbeugt, ist kein Geheimnis. Die Zähne werden vor allem durch das Fluorid in der Zahnpasta vor Bakterien geschützt. Doch wie wirkt Fluorid genau?

Bekannt ist, dass Fluorid in den Zahnschmelz eingebaut wird und so den Zahn „abhärtet“. Neu hingegen ist, dass Fluorid auch die Kraft beeinflusst, mit der sich Bakterien an Oberflächen anheften. Das haben nun Forscher der Saar-Uni um Physikprofessorin Karin Jacobs erstmals gezeigt. Die Ergebnisse der Studie wurden in der Fachzeitschrift Langmuir veröffentlicht.

Ein Zuviel an Zucker ist nach wie vor der Hauptgrund für Löcher in den Zähnen. Die Bakterien im Mund bauen die Zuckerverbindungen ab und setzen dabei Säuren frei, die den Zahnschmelz angreifen. Vorbeugend hilft hier nur regelmäßiges Zähneputzen mit fluoridhaltiger Zahnpasta. Das darin enthaltene Fluorid verbindet sich mit dem Zahnmaterial, dem Hydroxylapatit (HAP), und bildet unter anderem Fluorapatit (FAP), das weniger säurelöslich ist als das HAP und den Zahn vor Säureangriffen durch die Mikroben schützen soll. Forscherinnen und Forscher der Saar-Uni um Physikprofessorin Karin Jacobs haben allerdings schon vor einigen Jahren gezeigt, dass Fluorid nicht so tief in den Zahnschmelz eindringt, wie lange vermutet wurde. „Zudem ist dieser Schutzmantel sehr dünn und fragil“, erklärt die Saarbrücker Physikerin weiter. „Ob die bisherige Erklärung der Wirksamkeit von Fluor tatsächlich ausreichend ist, ist daher fraglich und war unsere Motivation zu weiteren Experimenten.“

In einer neuen Studie hat das Team um Jacobs nun zusammen mit Mikrobiologen des benachbarten Universitätsklinikums Homburg untersucht, welche Rolle diese dünne Fluoridschicht bei der Interaktion zwischen Bakterien und Zahnoberfläche spielt. Für ihre Versuche verwendeten die Forscher eigens hergestellte Hydroxylapatit-Plättchen, die dem Zahnschmelz in der Zusammensetzung zwar ähneln, aber eine sehr glatte Oberfläche aufweisen und daher für die hochauflösenden Analysemethoden besser geeignet sind als natürliche Zähne. Die Physiker haben mit Hilfe der Rasterkraftmikroskopie die Haftkraft verschiedener Bakterienarten bestimmt, darunter zwei Karieserreger (Streptococcus mutans, Streptococcus oralis). Es zeigte sich, dass die untersuchten Mikroorganismen – gleich um welche Spezies es sich handelte – an den Oberflächen, die mit Fluorid behandelt worden sind, nur halb so stark haften blieben wie an den unbehandelten Oberflächen.

„Ob dieses im Labor erzielte Ergebnis auch in der Mundhöhle Bestand hat, müssen wir nun noch untersuchen“, kommentiert Jacobs die Ergebnisse. „Interessant ist in jedem Fall, dass Fluorid bakterielle Haftkräfte generell zu schwächen scheint.“ Dieser Effekt könnte künftig zum Beispiel auch dabei helfen, bessere Zahnfüllungen, Zahnersatz und medizinische Implantate zu entwickeln.

Die Studie, die im Rahmen des Sonderforschungsbereiches 1027 „Physikalische Modellierung von Nichtgleichgewichtsprozessen in biologischen Systemen” entstanden ist, wurde unter dem Titel „Reduced adhesion of oral bacteria on hydroxyapatite by fluoride treatment“ im renommierten Journal Langmuir veröffentlicht: http://dx.doi.org/10.1021/la4008558

Fragen beantwortet:
Prof. Dr. Karin Jacobs
Experimentalphysik
E-Mail: k.jacobs(at)physik.uni-saarland.de
Tel.: 0681 302-71788
www.uni-saarland.de/jacobs

Melanie Löw | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics