Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals erfolgreiche Hirnoperationen mit Ultraschall

22.06.2009
Am Magnetresonanz-Zentrum der Universitäts-Kinderklinik Zürich sind weltweit erstmals zehn Patienten mit transkraniellem Hochenergie-Ultraschall erfolgreich am Gehirn operiert worden.

Dieses vollständig nicht-invasive Operationsverfahren eröffnet neue Horizonte für die Neurochirurgie und die Therapie verschiedener neurologischer Erkrankungen.

Ohne die Schädeldecke zu öffnen, sind weltweit zum ersten Mal Patienten erfolgreich am Gehirn operiert worden. Im Rahmen einer klinischen Studie am MR-Zentrum der Universitäts-Kinderklinik Zürich sind sie mit transkraniellem Hochenergie-Ultraschall behandelt worden.

Einem Forschungsteam unter der Leitung von Prof. Daniel Jeanmonod von der Abteilung für Funktionelle Neurochirurgie der neurochirurgischen Klinik des Universitätsspitals Zürich und Prof. Ernst Martin, dem Leiter des Magnetresonanz-Zentrums der Universitäts-Kinderklinik, ist es gelungen, die Sicherheit und die Wirksamkeit dieser revolutionären Operationsmethode nachzuweisen, die vollständig nicht-invasive Eingriffe am Gehirn auf ambulanter Basis erlaubt.

Seit einigen Jahren wird Hochenergie-Ultraschall bereits in der Gynäkologie und bei Prostatatumoren eingesetzt, um erkranktes Gewebe zu veröden. Bis jetzt war es jedoch wegen der damit verbundenen technischen Schwierigkeiten nicht möglich, dieses Verfahren auch in der Neurochirurgie für Hirnoperationen durch die intakte Schädeldecke hindurch anzuwenden.

Nicht-invasive Operationen am Gehirn

Die Zürcher Gruppe hat in mehrjähriger Forschungsarbeit ein Prototypensystem für transkraniellen, MR-gesteuerten, fokussierten Hochenergie-Ultraschall für den klinischen Einsatz optimiert und konnte neue, nicht-invasive Operationsprozesse entwickeln. Seit September 2008 hat das Team im Rahmen einer klinischen Studie zehn Erwachsene mit dem neuen neurochirurgischen Verfahren operiert. Alle Eingriffe verliefen erfolgreich und ohne Komplikationen. Damit sind die Voraussetzungen für die klinische Weiterentwicklung und die Erschliessung neuer Anwendungsgebiete für diese revolutionäre Operationstechnik gegeben.

Die Ultraschall-Hirnoperationen werden in einem klinischen Magnetresonanzsystem durchgeführt, das mit dem Hochenergie-Ultraschall-Forschungssystem "ExAblate® 4000" des israelischen Kooperationspartners InSightec zu einer Plattform für bildgesteuerte, nicht-invasive Eingriffe aufgerüstet wurde. Mittels bildgebender Magnetresonanz (MRI) geplant und laufend überwacht wird der Hochenergie-Ultraschall durch die intakte Schädeldecke des Patienten ins Gehirn übertragen und in einem Brennpunkt von 3 bis 4 Millimeter Durchmesser konzentriert. Der Temperaturanstieg während der aufeinander folgenden, jeweils 10 bis 20 Sekunden dauernden Ultraschallsonikationen kann auf MR-Wärmekarten fortlaufend präzise dargestellt und kontrolliert werden. Durch räumlich scharf definierte Erhitzung auf bis zu 60 Grad werden in dem Verfahren einzelne oder auch mehrere spezifische Operationsziele verödet. Der mehrstündige Eingriff erfolgt ohne Narkose, bei vollem Bewusstsein des Patienten, und wird ambulant durchgeführt.

Forschungsprojekt im Rahmen des Nationalen Forschungsschwerpunktes Co-Me

Das Potential von nicht-invasivem, transkraniellem Hochenergie Ultraschall wird im Rahmen des Nationalen Forschungsschwerpunktes Co-Me (computer aided and image guided medical interventions) anhand von klinischen Studien erforscht. Die Wissenschaftler, Kliniker und Techniker von Co-Me verfolgen das Ziel, Interventionen mittels Hochenergie-Ultraschall zu etablieren und weiterzuentwickeln, um in naher Zukunft ein breites Spektrum vollständig nicht-invasiver Behandlungen, zum Beispiel funktionelle Neurochirurgie, Hirntumore, Schlaganfälle und reversible Öffnung der Bluthirnschranke zur medikamentösen Behandlung neurologischer Erkrankungen, anbieten zu können.

Das Forschungsprojekt ist eine Kooperation zwischen den beiden Hochschulen Universität Zürich und ETH Zürich, vertreten durch das MR-Zentrum des Kinderspitals (Prof. Ernst Martin), die Abteilung für Funktionelle Neurochirurgie der neurochirurgischen Klinik des Universitätsspitals Zürich (Prof. Daniel Jeanmonod), das Medical Image Analysis and Computer Vision Laboratory (Prof. Gabor Székely) und das Institute of Neuroinformatics (PD Dr. Daniel Kiper) und dem Industriepartner InSightec Ltd.

Kontakt:
Beat Werner, MR-Zentrum, Universitäts-Kinderkliniken Zürich
Tel : ++41 (0)44 266 8123
E-Mail: beat.werner@kispi.uzh.ch

Beat Müller | idw
Weitere Informationen:
http://www.uzh.ch/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics