Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie ergeht es einer einzelnen Netzhautzelle?

08.10.2013
Wissenschaftler der Universitäts-Augenklinik Bonn dringen in ein vollkommen neues Forschungsfeld vor: Sie entwickeln aus rund 1000 Einzelteilen ein Spezialmikroskop, das mithilfe eines Lasers einzelne Fotorezeptoren der Netzhaut im menschlichen Auge untersuchen und stimulieren kann.

Davon versprechen sich die Forscher neuartige Erkenntnisse zur Funktionsweise des Auges und zur Wirkweise von Medikamenten. Die neue Emmy-Noether-Forschergruppe – derzeit deutschlandweit die einzige in der Augenheilkunde – wird mit rund 1,6 Millionen Euro von der Deutschen Forschungsgemeinschaft (DFG) gefördert.

Das neuartige Instrument zur Untersuchung des menschlichen Auges ist eine Kombination aus einem Laser und einem sehr hochauflösenden Mikroskop, das einzelne Sinneszellen der Netzhaut abbilden kann. „Ein solches Gerät ist nicht auf dem Markt zu haben – ähnliche experimentelle Geräte gibt es bislang nur in Berkeley und Birmingham/Alabama in den USA“, sagt Dr. Wolf Harmening. Der Biologe mit ausgewiesenen Kenntnissen in Elektrotechnik ist Leiter der neuen Emmy-Noether-Nachwuchsgruppe „Neue adaptive Optiken für die ophthalmologische Bildgebung und Funktionsprüfung: Untersuchung visueller Funktion und Dysfunktion auf Einzelzellebene“ der Universitäts-Augenklinik Bonn.

In der Netzhaut befinden sich rund 130 Millionen Sinneszellen

Die Forschergruppe wird von der Deutschen Forschungsgemeinschaft (DFG) in den nächsten fünf Jahren mit rund 1,6 Millionen Euro gefördert. Ziel ist ein Mikroskop, in dem ein Laser-Lichtpunkt über die Netzhaut wandert und Bilder in bislang nicht gekannter Schärfe aufzeichnet. „Bislang wird von Patienten meist ein Bild von der gesamten Netzhaut aufgenommen“, sagt Dr. Harmening. „Wir möchten dagegen auf der Ebene einzelner Sinneszellen arbeiten.“ Die Herausforderung besteht darin, dass das Mikroskop für diesen Zweck mit einer ungewöhnlich großen optischen Auflösung arbeiten muss. Schließlich befinden sich auf der menschlichen Netzhaut, die etwas größer als eine Briefmarke ist, rund 130 Millionen Sinneszellen. Die kleinsten Rezeptoren haben einen Durchmesser von nur zwei Tausendstel Millimeter.

Ein flexibler Spiegel kompensiert Verzerrungen

Unregelmäßigkeiten der Linse und der Hornhaut des Auges verzerren aber das Bild. „Das verhält sich ganz ähnlich wie bei den Sternen am Nachthimmel: Weil die Atmosphäre die eigentlich punktförmigen Gebilde verzerrt, erscheinen sie gezackt und funkeln“, berichtet der Forschungsgruppenleiter. Aus der Astronomie haben die Wissenschaftler auch eine Methode übernommen, mit dem sich die Verzerrungen im Augenmikroskop kompensieren lassen. Sie messen die Abweichungen von der Idealform im Auge des Patienten auf den Tausendstel Millimeter genau. Ein flexibler Spiegel, der sich durch Aktuatoren verbiegen lässt, nimmt eine Form an, die diese Unregelmäßigkeiten im Auge genau kompensiert. Durch die Spiegelung wird die optische Abweichung aufgehoben, die einzelnen Sinneszellen der Netzhaut erscheinen gestochen scharf.

Wesentliche Impulse für Grundlagenforschung und Therapien

Mit dieser Technik erschließt sich ein vollkommen neues Feld in der Erforschung des menschlichen Auges: Wie ergeht es einer einzelnen Netzhautzelle, und wie trägt sie zum Seheindruck bei? Durch die Stimulation bestimmter Fotorezeptoren können die Wissenschaftler die Funktionsweise der Netzhaut grundlegend untersuchen: Was sieht ein Proband, wenn eine bestimmte Sinneszelle angeregt wird? Darüber hinaus lässt sich mit dem neuartigen Mikroskop auch die Wirkung vieler Therapien testen: Wie reagiert eine Netzhautzelle auf ein bestimmtes Medikament oder ein konkrete Behandlung? „Dieses innovative Bildgebungsverfahren mit funktioneller Kopplung kann nicht nur weiterführende Erkenntnisse bezüglich des natürlichen Verlaufs von potentiellen zur Erblindung führenden Netzhauterkrankungen liefern, sondern auch pharmakologische, stammzellbasierte oder gentherapeutische interventionelle Studien ermöglichen“, sagt Prof. Dr. Frank Holz, Direktor der Universitäts-Augenklinik Bonn.

Biologe mit Expertise in Elektrotechnik

Der 35-Jährige leitet die neue Emmy-Noether-Gruppe an der Universitäts-Augenklinik seit Anfang August. Mit dem Emmy-Noether-Programm möchte die DFG jungen Nachwuchswissenschaftlern einen Weg zu früher wissenschaftlicher Selbstständigkeit eröffnen. Dr. Harmening machte sein Diplom in Biologie an der RWTH Aachen und belegte nebenbei noch Elektrotechnik. Nach seiner Promotion war er Wissenschaftlicher Assistent in der Tierphysiologie an der RWTH. An der University of California in Berkeley (USA) konzentrierte er sich auf die Erforschung des menschlichen Auges. Dr. Harmening ist verheiratet und hat zwei Söhne.

Kontakt für die Medien:

Dr. Wolf Harmening
Universitäts-Augenklinik Bonn
Tel. 0228/28715882
E-Mail: wolf.harmening@ukb.uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Die neue Achillesferse von Blutkrebs
22.05.2018 | Ludwig Boltzmann Gesellschaft

nachricht Schnelltests für genauere Diagnose bei Hirntumoren
17.05.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics