Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Epilepsie: Wenn der Türsteher in Nervenzellen zu viel durchlässt

19.11.2015

Bei einer Epilepsie geraten die Nervenzellen aus ihrem gewohnten Takt. Daran sind auch Ionenkanäle beteiligt, die die Erregbarkeit von Nervenzellen entscheidend bestimmen. Ein Forscherteam unter Federführung der Universität Bonn hat nun einen neuen Mechanismus für die Beeinflussung von Ionenkanälen entdeckt, der möglicherweise für den Ausbruch des Krampfleidens mitverantwortlich ist: Wenn zu wenig Spermin vorhanden ist, kommt es zur einer Übererregbarkeit der Nervenzellen. Die Forscher hoffen, einen Ansatzpunkt für neue Therapien gefunden zu haben. Sie berichten im „The Journal of Neuroscience”.

In Deutschland leidet etwa jeder hundertste Mensch unter einer Epilepsie - immerhin jeder zwanzigste ist zumindest einmal im Leben von einem solchen Krampfanfall betroffen. Dazu kommt es, wenn viele Nervenzellen im Gehirn gleichzeitig feuern.


So sieht eine Nervenzelle aus dem Hippocampus einer Ratte aus: Die Zelle und ihre Ausläufer sind mit einem Fluoreszenzfarbstoff gefüllt, der die Strukturen blauviolett leuchten lässt.

(c) Foto: AG Heinz Beck/Uni Bonn

Die Wissenschaft fahndet nach den Ursachen, die zu dieser gleichzeitigen Übererregung der Gehirnzellen führen. Forscher der Klinik für Epileptologie, des Instituts für Neuropathologie und des Instituts für Molekulare Psychiatrie haben nun zusammen mit dem Forschungszentrum Caesar und der Hebrew University (Israel) einen bislang unbekannten Mechanismus entschlüsselt, der an der Entwicklung einer Epilepsie beteiligt ist.

„Türsteher“ bestimmen, wie viele Natriumionen hereindürfen

Bei diesem Mechanismus spielen Natriumkanäle eine Schlüsselrolle. „Sie übernehmen bei der Erregung von Nervenzellfortsätzen und der Signalübertragung zwischen verschiedenen Zellen eine wichtige Rolle“, sagt Prof. Dr. Heinz Beck, der in der Experimentellen Epileptologie der Klinik für Epileptologie, am Life & Brain Zentrum und am Deutschen Zentrum für Neurodegenerative Erkrankungen (DZNE) forscht.

Natriumkanäle sind Schleusen, die Natriumionen durch winzige Poren durchlassen. Sie bestehen aus großen Eiweißkomplexen (Proteinen), die in den Membranen von Nervenzellen eingelagert sind. Wie eine Art Türsteher bestimmen sie, wie viele dieser Ionen hereindürfen und wie sich damit auch die Informationsübertragung zwischen den verschiedenen Zellen ändert. Die Wissenschaftler fanden eine starke Erhöhung eines bestimmten Natriumeinwärtsstroms, der die Erregbarkeit von Zellen im epileptischen Tier deutlich steigerte.

Deshalb verglichen Forscher um Prof. Beck zunächst die Natriumkanalproteine aus epileptischen Gehirnen mit denen aus gesunden. „Dabei zeigte sich aber keinerlei vermehrte Bildung von Natriumkanalproteinen, die hätte erklären können, wie es zu einer Übererregung von Nervenzellen kommt“, berichtet der Epileptologe.

Das Forscherteam wurde nach langer Suche bei einer ganz anderen Stoffgruppe fündig: den Polyaminen. Dazu gehört auch das Spermin, das in Zellen gebildet wird und sich von innen in die Poren der Natriumkanäle einlagern kann. In diesem Fall wird der Einstrom an Natriumionen gebremst und die Erregung der Nervenzelle wird gedämpft.

Durch Spermingaben wurde die Übererregung gedämpft

Die Wissenschaftler untersuchten, wieviel von der anfalldämpfenden Substanz in Nervenzellen von Ratten vorkommt, die unter einer Epilepsie litten, und verglichen die Werte mit gesunden Tieren. „Die Menge an Spermin in den Zellen des Hippocampus war bei den kranken Tieren gegenüber den gesunden deutlich reduziert“, berichten die Erstautoren Dr. Michel Royeck, Dr. Tony Kelly und Dr. Thoralf Opitz aus Prof. Becks Team. Diesen wichtigen Befund prüften die Forscher, indem sie den Mangel in den Nervenzellen epileptischer Ratten durch Gabe von Spermin kompensierten. Daraufhin wurde die Erhöhung von Natriumströmen rückgängig gemacht.

Offenbar wird der geringere Gehalt an Spermin in den epileptischen Rattengehirnen durch Hochregelung der Spermidine/spermine-N(1)-acetyltransferase verursacht. Das Enzym baut das für die Steuerung der Natriumkanäle wichtige Spermin verstärkt ab. Dieses Ergebnis könnte nach den Einschätzungen der Wissenschaftler ein potenzieller Ansatzpunkt für neuartige Epilepsietherapien sein.

„Wenn es gelingen würde, die Acetyltransferase mit einem Wirkstoff in ihrer Aktivität etwas zu bremsen, könnten der Sperminmangel und damit die Symptome der Epilepsie gemildert werden“, blickt Prof. Beck in die Zukunft. Von konkreten therapeutischen Anwendungen sei man jedoch noch weit entfernt.

Publikation: Downregulation of Spermine Augments Dendritic Persistent Sodium Currents and Synaptic Integration after Status Epilepticus, The Journal of Neuroscience, DOI: 10.1523/JNEUROSCI.0493-15.2015

Kontakt für die Medien:

Prof. Dr. Heinz Beck
Universitätsklinik für Epileptologie, Life & Brain Zentrum,
Deutsches Zentrum für Neurodegenerative Erkrankungen,
Sprecher Sonderforschungsbereich 1089
Tel. 0228/6885215
E-Mail: Heinz.Beck@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics