Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dresdner Forschern gelingt mit künstlichem Pankreas Durchbruch in der Diabetestherapie

29.10.2013
Menschliche Inselzellen produzieren in implantiertem Bio-Reaktor knapp ein Jahr Insulin im Körper eines Typ-1-Diabetikers - weltweit zum ersten Mal setzten Diabetesforscher des Universitätsklinikums Carl Gustav Carus Dresden, das Partner im Deutschen Zentrum für Diabetesforschung ist, erfolgreich ein künstliches Pankreassystem zur Behandlung eines Patienten mit Typ-1-Diabetes ein.

Dazu implantierten sie einem Patienten einen Bio-Reaktor mit menschlichen Inselzellen, die dort rund ein Jahr zuverlässig Insulin produzierten. Das von Professor Dr. Stefan R. Bornstein, Direktor der Medizinischen Klinik III des Dresdner Uniklinikums, geleitete Forscherteam publiziert die Ergebnisse der erfolgreichen Therapie nun in der renommierten wissenschaftlichen Zeitschrift Proceedings of the National Academy of Sciences (PNAS 2013; doi:10.1073/pnas.1317561110).

Die neuartige Therapie und das Pankreassystem könnten die bei Transplantationen notwendige Immunsuppression überflüssig machen. Allerdings bedarf es weiterer Studien, bevor eine größere Zahl an Patienten von dieser innovativen Therapie profitieren kann.

Zum ersten Mal weltweit wurde am Dresdner Universitätsklinikum einem Patienten mit Typ-1-Diabetes ein künstliches Pankreassystem eingepflanzt, in dem Inselzellen wie in der Bauchspeicheldrüse (Pankreas) das lebenswichtige Insulin produzieren. Rund ein Jahr blieb der kleine Bio-Reaktor in Form einer flachen Dose im Körper des Patienten. Seine Besonderheit: Das künstliche Pankreassystem ― entwickelt von einem israelischen Unternehmen ― macht anders als bei sonstigen Organ- und Gewebetransplantationen die Immunsuppression überflüssig.

Denn es schützt die Spenderzellen vor Angriffen des Immunsystems, lässt jedoch umgekehrt das Insulin in den Körper gelangen. Prof. Bornstein, Direktor der Medizinischen Klinik und Poliklinik III am Dresdner Uniklinikum: „Das ‚Ei des Kolumbus‘ ist dabei die kontrollierte Sauerstoffversorgung der Zellen, die dadurch aktiv bleiben.“ Prof. Bornstein ist überzeugt, dass das neue System die Diabetestherapie zukünftig revolutionieren kann.

Damit könnten zukünftig sogar insulinproduzierende Zellen vom Schwein eingesetzt werden, ohne vom menschlichen Organismus abgestoßen zu werden. „Müssen die Empfänger von Spenderzellen nicht mehr lebenslang Immunsuppressiva nehmen und könnte man das Problem der fehlenden Spenderorgane umgehen, könnten viel mehr Menschen mit Diabetes als bisher von einer Inselzelltransplantation profitieren“, so der Dresdner Diabetes-Experte.

„Der weltweit erste Einsatz eines Bio-Reaktors bei einem Diabetespatienten ist ein weiterer Beleg für die erfolgreiche Verknüpfung von Spitzenmedizin und Wissenschaft in Dresden. Sie ist Frucht einer Strategie, deren Fundament mit der Gründung der Dresdner Hochschulmedizin vor nunmehr genau 20 Jahren gelegt wurde“, sagt Prof. Michael Albrecht, Medizinischer Vorstand des Universitätsklinikums Carl Gustav Carus. „Diese beeindruckenden Ergebnisse verdeutlichen unseren Anspruch, Grundlagenforschung zu Gunsten von Patienten umzusetzen ― eines der Hauptziele der Medizinischen Fakultät in Dresden“, so Prof. Dr. Heinz Reichmann, Dekan der Medizinischen Fakultät Carl Gustav Carus der Technischen Universität Dresden.

Für den Medizin-Nobelpreisträger Prof. Andrew V. Schally von der Miller School of Medicine der University of Miami, der im Forschungsverbund mit den Dresdnern steht, hat dieser Erfolg „historische Bedeutung“. Denn für Menschen mit Typ-1-Diabetes, die trotz medikamentöser Therapie an lebensbedrohlichen Schwankungen ihres Zuckerhaushalts leiden, stellen die Pankreas-Organ- sowie die Inselzell-Transplantation derzeit die einzigen Möglichkeiten dar, um die insulinproduzierenden Beta-Zellen zu ersetzen. Beide Optionen bringen eine deutlich verbesserte Diabetes-Kontrolle und Lebensqualität für die Betroffenen. Doch die dauerhafte Einnahme von Immunsuppressiva macht anfällig für Infektionen oder andere mögliche Nebenwirkungen wie ein erhöhtes Krebsrisiko. Darum kam die Behandlung bislang nur für Menschen in Betracht, die ganz spezielle medizinische Kriterien erfüllen.

Dr. Barbara Ludwig hat 2008 das Inselprogramm an der Medizinischen Klinik und Poliklinik III am Dresdner Universitätsklinikum aufgebaut, das seitdem deutschlandweit das einzige aktive Zentrum für die Inseltransplantation ist. Im Zentrum von Dr. Ludwigs Forschungsarbeit steht die Verbesserung der Qualität der Inselzellen. Das künstliche Pankreassystem hat sie zunächst umfassend zusammen mit israelischen Kollegen an Tiermodellen erprobt, bevor es erstmals klinische Anwendung fand. Die Ergebnisse dieser Forschungsarbeit wurden gerade in der hochrangig eingestuften Fachzeitschrift PNAS (Proceedings of the National Academy of Sciences) publiziert: PNAS 2013; doi:10.1073/pnas.1317561110. Bevor jedoch mehr Menschen vom Dresdner Forschungserfolg profitieren können, sind weitere Studien und Entwicklungen notwendig. „Wir schätzen, dass das System in fünf Jahren eine Therapieoption in der Behandlung des Diabetes sein wird“, so Professor Bornstein.

Kontakt:
Universitätsklinikum Carl Gustav Carus Dresden
Technische Universität Dresden
Medizinische Klinik und Poliklinik III
Prof. Dr. med. Stefan R. Bornstein
Tel.: +49 0351 458 5955
Fax: +49 0351 458 6398
E-Mail: stefan.bornstein@uniklinkum-dresden.de

Susanne Witzigmann | idw
Weitere Informationen:
http://www.uniklinkum-dresden.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

nachricht Spezialisten-Zellen helfen Gedächtnis auf die Sprünge
17.03.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie