Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Discovering the Missing "LINC" to Deafness

29.01.2013
Mutation in a genetic protein prevents hearing, reports a TAU researcher

Because half of all instances of hearing loss are linked to genetic mutations, advanced gene research is an invaluable tool for uncovering causes of deafness — and one of the biggest hopes for the development of new therapies.


The different position of cell nuclei in unhealthy (red) cells relative to healthy (blue) cells leads to deafness.

Now Prof. Karen Avraham of the Sackler Faculty of Medicine at Tel Aviv University has discovered a significant mutation in a LINC family protein — part of the cells of the inner ear — that could lead to new treatments for hearing disorders.

Her team of researchers, including Dr. Henning Horn and Profs. Colin Stewart and Brian Burke of the Institute of Medical Biology at A*STAR in Singapore, discovered that the mutation causes chaos in a cell's anatomy. The cell nucleus, which contains our entire DNA, moves to the top of the cell rather than being anchored to the bottom, its normal place.
Though this has little impact on the functioning of most of the body's cells, it's devastating for the cells responsible for hearing, explains Prof. Avraham. "The position of the nucleus is important for receiving the electrical signals that determine proper hearing," she explains. "Without the ability to receive these signals correctly, the entire cascade of hearing fails."

This discovery, recently reported in the Journal of Clinical Investigation, may be a starting point for the development of new therapies. In the meantime, the research could lead towards work on a drug that is able to mimic the mutated protein's anchoring function, and restore hearing in some cases, she suggests.

From human to lab to mouse

Prof. Avraham originally uncovered the genetic mutation while attempting to explain the cause of deafness in two families of Iraqi Jewish descent. For generations, members of these families had been suffering from hearing loss, but the medical cause remained a mystery. Using deep genetic sequencing, a technology used to sequence the entire human genome, she discovered that the hearing impaired members of both families had a mutated version of the protein Nesprin4, a part of the LINC group of proteins that links the cell's nucleus to the inner wall of the cell.

In the lab, Prof. Avraham recreated this phenomenon by engineering the mutation in single cells. With the mutation in place, Nesprin4 was not found in the area around the cell nucleus, as in healthy cells, but was spread throughout the entire cell. Investigating further, she studied lab mice that were engineered to be completely devoid of the protein.

Created in Singapore, the mice were originally engineered to study the biology of LINC proteins. The fact that they were deaf came as a complete surprise to researchers. Without this protein serving as an anchor, the cell nucleus is not located in the correct position within inner ear cells, but seems to float throughout. This causes the cells' other components to reorient as well, ultimately harming the polarity of the cells and hindering electrical signals. It's a mutation that took a heavy toll on the cells' ability to transfer sound signals, explains Prof. Avraham, rendering the mice deaf.

Given the similarity between mouse and human inner ear cells, researchers predict that the same phenomenon is occurring in human patients with a mutation in the Nesprin4 gene.

Looking for a wider impact

Prof. Avraham says that she and her collaborators are the first to reveal this mutation as a cause of deafness. "Now that we have reported it, scientists around the world can test for mutations in this gene," she notes. The mutation could indeed be a more common genetic cause of deafness in a number of populations. And because Nesprin4 belongs to a family of proteins that have been linked to other diseases, such as muscular coordination and degeneration disorders, this could prove a ripe area for further research.

At TAU, the research was supported by the National Institutes of Health — NIDCD and Israeli Center of Research Excellence, I-CORE.

G. Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences