Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Diabetes auf die Schliche kommen

26.03.2010
DFG-Förderung für Forschungsprojekt am Bergmannsheil:
Spezielle Antikörper machen Insulin produzierende Zellen am Bildschirm sichtbar
Sie machen den Unterschied zwischen gesundem Menschen und Diabetiker: Die sogenannten Beta-Zellen. Sie sind im menschlichen Körper für die Produktion von Insulin zuständig und regulieren den Blutzuckerspiegel. Wenn sie nicht mehr ausreichend vorhanden sind oder ihre Funktion verlieren, kommt es zu einer Diabeteserkrankung. Forscher am Berufsgenossenschaftlichen Universitätsklinikum Bergmannsheil verfolgen jetzt einen neuen Ansatz, den Ursachen dieser Zellschädigung auf die Schliche zu kommen: Mit einem bislang einzigartigen, experimentellen Verfahren ist das Team um PD Dr. Stephan Schneider, Oberarzt der Medizinischen Klinik I (Direktor: Univ.-Prof. Dr. Horst Harald Klein) in der Lage, die Insulin produzierenden Zellen der Bauchspeicheldrüse am Bildschirm darstellen zu können. „Wenn sich diese Methode im klinischen Einsatz bewährt, könnten wir künftig in der Lage sein, das Ausmaß des Verlustes an Beta-Zellen beim Diabetiker viel genauer bestimmen zu können“, erklärt Schneider. „Somit könnten wir auch die Therapie noch exakter und wirkungsvoller auf den einzelnen Patienten abstimmen.“

Markierte Zellen werden sichtbar

Für die Weiterentwicklung dieses Ansatzes erhält das Team von der Deutschen Forschungsgemeinschaft (DFG) jetzt eine Förderung in Höhe von rund 170.000 Euro. Dabei arbeiten die Forscher mit einem radiologischen Verfahren und einem selbst entwickelten Kontrastmittel: Im Körper soll es ausschließlich an die Beta-Zellen anbinden und sie somit am Bildschirm kenntlich machen. Das Kontrastmittel basiert auf so genannten Single-Chain-Antikörpern (SCA). Diese sind so präpariert, dass sie speziell von den Betazellen sehr schnell und mit hoher Zuverlässigkeit aufgenommen werden. Auf diese Weise werden die Betazellen „markiert“ und sie werden mittels einer nuklearradiologsichen Untersuchung bildlich darstellbar.

Neue therapeutische Möglichkeiten denkbar

Inwieweit dieses Verfahren wirklich aussagekräftig und zuverlässig ist, will die Arbeitsgruppe im Rahmen des DFG-Förderprojektes herausfinden. Der Weg zu einer praktikablen Anwendung für den Patienten ist allerdings noch weit: „Wenn sich unsere Annahmen bestätigen, könnten wir frühestens in drei bis vier Jahren so weit sein“, erklärt Schneider. Sein Team gehört europaweit zu den führenden Forschergruppen für Diabeteserkrankungen. Bereits im letzten Jahr hat es eine Projektförderung der US-amerikanischen Gesundheitsorganisation National Institutes of Health (NIH) erhalten. „Wir arbeiten ebenso daran, neue therapeutische Methoden zu entwickeln, um gezielt Beta-Zellen resistenter zu machen“, sagt der Diabetologe. „Im günstigsten Fall könnten wir dann den Verlust der Insulin produzierenden Zellen beim Diabetiker aufhalten oder zumindest verzögern.“

Fehlfunktion des Immunsystems löst Diabetes aus

Die Ursache für den Verlust der Beta-Zellen liegt in einer Fehlfunktion des Immunsystems: Unter bestimmten Voraussetzungen zerstört es die wichtigen Insulinlieferanten, so dass der Körper nicht mehr in der Lage ist, seinen Blutzuckerspiegel selbst zu regulieren. Auslöser für diese Fehlfunktion können möglicherweise genetische Prägungen, bestimmte Viruserkrankungen oder andere Faktoren sein. Die Erkrankten dieses Diabetestyps (sog. Typ 1-Diabetes) müssen regelmäßig Insulin injiziert bekommen. Bei Diabetikern des Typs 2 (früher als „Altersdiabetes“ bezeichnet) sind andere, nicht-immunologische Ursachen ausschlaggebend. Auch hier kommt es zu einem Verlust der Beta-Zellen mit einer ungenügenden Insulinproduktion, zudem wird das Insulin vom Körper schlecht verarbeitet. Die bisher verfügbaren Therapien (z. B. Sulfonylharnstoffe) wirken häufig zu Beginn der Erkrankung gut. Sie sind aber nicht in der Lage, das Fortschreiten der Erkrankung aufzuhalten und daher meistens mittelfristig nicht effektiv genug. „Deshalb erwarten Therapeuten wie Patienten neue Diabetesmedikamente, die stärker an der Ursache der Erkrankung ansetzen, unproblematisch in der Anwendung sind und mit vertretbaren Nebenwirkungen auskommen“, sagt Schneider.

[Bildmaterial steht im Internet zum Download zur Verfügung unter der Adresse:
http://www.bergmannsheil.de/index.php?id=157&L=0&info_ID=275]

Über das Bergmannsheil

Das Berufsgenossenschaftliche Universitätsklinikum Bergmannsheil - Klinikum der Ruhr-Universität Bochum - repräsentiert den Strukturwandel im Ruhrgebiet wie kein anderes Krankenhaus: 1890 als erste Unfallklinik der Welt zur Versorgung von verunglückten Bergleuten gegründet, zählt es heute zu den modernsten und leistungsfähigsten Akutkliniken der Maximalversorgung. In 22 Kliniken und Fachabteilungen mit insgesamt 622 Betten werden jährlich rund 19.000 Patienten stationär und ca. 60.000 ambulant behandelt. Mehr als die Hälfte der Patienten kommen aus dem überregionalen Einzugsbereich.

PD Dr. Stephan Schneider
Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH
Medizinische Klinik I - Allgemeine Innere Medizin, Endokrinologie und Diabetologie
Bürkle-de-la-Camp-Platz 1
44789 Bochum
Tel.: 0234/302-3469
E-Mail: stephan.schneider@bergmannsheil.de

PD Dr. Stephan Schneider | Berufsgenossenschaftliches Unive
Weitere Informationen:
http://www.bergmannsheil.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics