Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diabetes: Wie "süßes Blut" entstehen kann

31.10.2008
Heinrich-Wieland-Preisträger Markus Stoffel trägt zur Entschlüsselung der Ursachen des Diabetes bei

Wissenschaftler sind im Begriff, die molekularen Ursachen für die Entstehung der Zuckerkrankheit (Diabetes mellitus) zu entschlüsseln. Einen maßgeblichen Beitrag zur Beantwortung wichtiger Fragen zu diesem Forschungsgebiet hat der Züricher Mediziner Prof. Markus Stoffel geleistet, der dafür in diesem Jahr den renommierten Heinrich-Wieland-Preis erhielt.

Er entdeckte zwei Kommunikationswege in menschlichen Körperzellen, die, wenn sie gestört sind, zum Typ 2 Diabetes führen können. Typ 2 Diabetes ist bei weitem die häufigste Form der Zuckerkrankheit, an der mehr als 90 Prozent der Diabetiker leiden. Mit seiner Forschungsarbeit hat der in Köln geborene Forscher der Eidgenössisch Technischen Hochschule (ETH) Zürich, Prof. Markus Stoffel, entscheidende Meilensteine in der Erklärung der Mechanismen gesetzt, die zu Typ 2 Diabetes führen. Zugleich verdankt ihm die Wissenschaft neue Erkenntnisse zur Rolle der so genannten "Mikro-RNAs" im menschlichen Körper.

In den westlichen Industrieländern breitet sich Diabetes schnell aus. Über fünf Millionen Menschen werden allein in Deutschland wegen der Krankheit behandelt, weltweit sind schätzungsweise 180 Millionen davon betroffen. Bis 2030 soll sich ihre Zahl verdoppeln. Herzinfarkt, Schlaganfall, Erblindung, Nierenschäden und Impotenz sind nur einige der möglichen schweren Folgen der Zuckerkrankheit.

Diabetes-Patienten leiden unter einem chronisch erhöhten Blutzuckerspiegel. Ihre Körper sind entweder nicht in der Lage, das blutzuckersenkende Hormon Insulin herzustellen (Typ 1 Diabetes), oder sie verlieren im Laufe des Lebens die Fähigkeit dazu (Typ 2 Diabetes). Mit den von Prof. Stoffel entdeckten biochemischen Kommunikationswegen steuert der Körper seinen Blutzuckerspiegel und seinen Fettstoffwechsel. Dieser Mechanismus funktionieret bei Typ 2 Diabetikern nicht richtig. Der eine Kommunikationspfad führt über eine vor 15 Jahren entdeckte Klasse von Molekülen, die "Mikro-Ribonukleinsäuren" (Mikro-RNAs). Sie sind an der Insulinausschüttung der Bauchspeicheldrüse beteiligt und somit auch an der Aufrechterhaltung eines konstanten Blutzuckerspiegels im Körper. Der zweite Weg verläuft über das Eiweiß Foxa2, das in Leberzellen als Insulin-Sensor dient.

Mikro-RNAs wurden erstmals im Jahr 1993 in speziellen Würmern, den Fadenwürmern, entdeckt, kommen jedoch praktisch in allen Lebewesen vor. Erst 2001 erhielten sie ihren Namen, denn lange Zeit war nicht bekannt, welche Funktion Mikro-RNAs haben. Heute wissen die Experten, dass sie die Biosynthese von Proteinen steuern, die auf dem Auslesen des genetischen Codes basieren, die so genannte Translation. Folglich spielen sie bei der Produktion von Proteinen im Körper und somit für die meisten Körperfunktionen eine wichtige Rolle. Mehr als 300 verschiedene Mikro-RNAs wurden im menschlichen Körper identifiziert. Der Wieland-Preisträger war der erste, der die Funktion einer dieser Mikro-RNAs im menschlichen Organismus entschlüsselte: "miR375" hilft, die Insulinfreisetzung aus den Langerhans'schen Inselzellen der Bauchspeicheldrüse zu regulieren.

Mikro-RNAs heften sich an Boten-RNA, eine einsträngige Kopie des genetischen Codes, mit dessen Hilfe die Zelle Eiweißmoleküle herstellt. Damit hemmen oder blockieren sie die Translation eines Gens in das entsprechende Protein: Das Doppel aus Mikro-RNA und Boten-RNA kann für die Produktion von Proteinen nicht mehr verwendet werden und wird daher von der Zelle zerstört. "Die Entschlüsselung der genauen Funktionsweise der Mikro-RNA 'miR375'", so beschreibt Prof. Stoffel die Bedeutung seiner Entdeckung, "eröffnet neue Angriffspunkte für die Entwicklung innovativer Medikamente zur Behandlung von Diabetes."

Der zweite Kommunikationspfad, der von Prof. Stoffel und seinem Team entdeckt wurde, betrifft ebenfalls die Aktivität von Genen, allerdings über einen völlig anderen Mechanismus: über das Protein Foxa2. Wenn Glukose nach einer Mahlzeit aus dem Darm ins Blut gelangt, schüttet die Bauchspeicheldrüse Insulin aus. Dieses Hormon sorgt dafür, dass der Körper Blutglukose als Energiereserve in Leber-, Fett- und Muskelgewebe zwischenspeichert. Wenn der Blutzuckerspiegel im Körper sinkt und zusätzliche Energie benötigt wird, mobilisiert die Leber Zucker und Fett aus den gespeicherten Vorräten, um den Körper mit der benötigten Energie zu versorgen.

Foxa2 spielt eine entscheidende Rolle bei der Aktivierung dieser Reserven, so die Entdeckung von Prof. Stroffel. Es regt Gene in den Leberzellen dazu an, Enzyme zu produzieren, durch die Fette und fettähnliche Stoffe biochemisch verändert werden. So können sie dem Körper wieder als Energiequelle dienen. Foxa2 wird jedoch durch Insulin blockiert, wenn ein hoher Blutzuckerspiegel eine ausreichende Energieversorgung sicherstellt, so dass Fettreserven nicht aktiviert werden. Bereits in frühen Phasen des Typ 2 Diabetes ist Foxa2 dauerhaft inaktiv und Leberzellen werden nicht mehr aktiviert, Fett umzuwandeln. Fett reichert sich an - die Leber verfettet. Dadurch wird die Empfindlichkeit der Leberzellen gegenüber Insulin weiter verringert und Diabetes entwickelt sich, obwohl der vorhandene Insulinspiegel des Körpers ausreichen würde, wenn die Leberfunktion nicht beeinträchtigt wäre.

Prof. Markus Stoffel, geboren 1962, ist Professor für Molekulare Systembiologie an der Eidgenössisch Technischen Hochschule (ETH) Zürich. Er studierte in Cambridge und Bonn Medizin. Nach einer zweijährigen Tätigkeit am Universitätsklinikum Hamburg-Eppendorf hatte er für drei Jahre verschiedene Positionen an der Universität Chicago (USA) inne. Im Jahr 1995 wurde er an der Rockefeller Universität in New York zum ordentlichen Professor ernannt. 2006 folgte er dem Ruf an die ETH Zürich. Dort baute er ein Forscherteam auf, das sich auf die Regulation des Glukose- und Lipidspiegels im Blut konzentriert. Prof. Stoffel erhielt 2006 den Wissenschaftspreis der Amerikanischen Diabetes-Gesellschaft und wurde zum Mitglied der Deutschen Akademie der Naturforscher "Leopoldina" berufen.

Der Heinrich-Wieland-Preis, der ihm jetzt verliehen wurde, gilt als eine der renommiertesten Auszeichnungen in der Stoffwechselforschung. Der Preis ist nach dem deutschen Chemiker, Lipidforscher und Medizinnobelpreisträger Heinrich Otto Wieland (1877-1957) benannt. Die Auszeichnung wird seit 1964 jährlich vergeben, ist mit 50.000 Euro dotiert und wird von dem forschenden Pharmaunternehmen Boehringer Ingelheim gestiftet, mit dem Heinrich Wieland eng verbunden war. Unter anderem hat er in dem heute weltweit agierenden Pharmaunternehmen zu Beginn des zwanzigsten Jahrhunderts die erste "Wissenschaftliche Abteilung" etabliert und damit die Forschung von Boehringer Ingelheim begründet.

Reiner Korbmann | idw
Weitere Informationen:
http://www.gdnae.de
http://www.boehringer-ingelheim.de/forschung/forschungspreise/hwp/index.jsp

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Medikamente mildern Mukoviszidose
23.01.2018 | Medizinische Hochschule Hannover

nachricht Dreifachblockade am Glioblastom
23.01.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics