Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Krankheit auf der Spur: Wie Radiopharmazeutika Stoffwechselveränderungen sichtbar machen

17.04.2015

Die Nuklearmedizin ist ein hochmodernes, sich rasch weiter entwickelndes Fachgebiet, dem eine Schlüsselrolle in der Optimierung der am individuellen Patienten orientierten Medizin zukommt.

Durch gezielte Diagnostik, die molekulare Abläufe im Körper sichtbar macht, können Krankheitsprozesse frühzeitig erkannt und so einer gezielten Behandlung zugeführt werden.

Grundprinzip hierfür sind die Radiopharmazeutika, schwach radioaktiv markierte Moleküle, die mit hoch technisierten Kamerasystemen im Körper sichtbar gemacht werden können. Gerade im Bereich der Krebsmedizin und der Herz-Kreislauf-Erkrankungen trägt die Nuklearmedizin so zu neuen, gezielten Untersuchungen und Behandlungen bei.

Als Ende des 19. Jahrhunderts Wilhelm Conrad Röntgen die nach ihm benannte Röntgenstrahlung entdeckte, kam dies einer Revolution in der Medizin gleich: Strukturen im Inneren des Körpers eines Menschen konnten plötzlich ohne Operation angesehen werden. Seit Röntgens Entdeckung wurden die radiologischen bildgebenden Verfahren immer weiter verfeinert.

Neuere Methoden wie die Computer-Tomographie (CT) ermöglichen inzwischen dreidimensionale Bilder in höchster Auflösung. So können hiermit bereits minimale Größen- oder Formveränderungen an Knochen und Organen erfasst werden.

Neben diesen, auf Röntgenstrahlung basierenden Verfahren kommt in der modernen radiologischen Diagnostik, insbesondere bei Weichteiluntersuchungen, vermehrt die Magnetresonanztomographie (MRT) zum Einsatz. Bei dieser strahlungsfreien Methode werden durch Magnetfelder die Atomkerne (zumeist Wasserstoff) im Inneren des Patienten in Schwingung versetzt. Diese Schwingungen können dann gemessen und mittels Computer in Bilder umgerechnet werden.

Das Feld der Bildgebung hat sich in den vergangenen Jahren enorm weiterentwickelt: Diagnosen molekularer und physiologischer Parameter wie die Erfassung bestimmter Oberflächenrezeptoren auf Tumoren, des Zuckerstoffwechsels oder der Blutperfusion sind jetzt möglich. Diesen Bereich der Bildgebung decken nuklearmedizinische Verfahren wie die Positronen-Emissions-Tomographie (PET) oder die Einzel-Photonen-Emissions-Computer-Tomographie (SPECT) ab.

Sie setzten auf die Darstellung der Funktionen einzelner Organe, indem deren Stoffwechsel sichtbar gemacht wird. Hierzu werden biologisch aktive Moleküle wie Antikörper, Peptide (Eiweißverbindungen) oder Zuckermoleküle, die jeweils schwach radioaktiv markiert sind, als Radiopharmaka in den menschlichen Kreislauf eingeschleust. Diese radioaktiven Moleküle – auch Tracer genannt – reichern sich hauptsächlich am krankhaft veränderten Gewebe an, so beispielsweise an Tumoren oder etwa bei der Alzheimer-Demenz an gefährlichen Eiweißablagerungen im Gehirn.

Im PET- oder SPECT-Verfahren wird die vom Radiopharmakon ausgehende Strahlung gemessen und in Bilder umgerechnet. Gerade in kombinierten Untersuchungsgeräten wie dem PET/CT oder PET/MR kann zum einen die Anatomie hochaufgelöst in 3D dargestellt und zum anderen mit der molekularen Information überlagert werden.

Somit lassen sich die krankhaften Veränderungen nicht nur punktgenau lokalisieren, sondern es kann über ihren dargestellten Stoffwechsel auch noch ihre Aggressivität abgeschätzt werden. Diese Technologien kommen vor allem in den Bereichen der Onkologie (sowohl für die Tumordiagnose als auch zur Kontrolle des Therapieerfolgs), der Neurologie (Alzheimer Demenz und Parkinson), der Kardiologie wie auch bei Infektionserkrankungen zur Anwendung.

Neben der Diagnose werden diese nuklearmedizinischen Verfahren auch für die Therapiekontrolle eingesetzt. Der große Vorteil der nuklearmedizinischen Bildgebung liegt darin, dass mit einer einzelnen Untersuchung der gesamte Körper auf Primärtumore und Metastasen abgesucht werden kann. Dies ermöglicht im Anschluss an die Diagnose auch eine individuellere Behandlung des Patienten, da so gezielt gegen die einzelnen Krankheitsherde vorgegangen werden kann. Diese Bildgebung ist daher ein wesentlicher Baustein in der Umsetzung der sogenannten patientenindividualisierten Therapie. Sie fördert die Verabreichung von patientenspezifischen Medikamenten und hat zudem den Vorteil, dass Krankheiten ganzheitlich erfasst und Krankheitsprozesse und Therapien zeitlich verfolgt werden können.

Um das Potential der molekularen Bildgebungsmethoden ausschöpfen zu können, ist es notwendig, die entsprechenden Marker weiterzuentwickeln. Diese Fortentwicklung der einzelnen Tracer hängt sehr stark vom medizinischen Fortschritt ab: je besser einzelne Krankheitsprozesse verstanden und krankheitsspezifische Oberflächenmoleküle an krankhaft verändertem Gewebe und Zellen spezifiziert werden können, desto besser gelingt es, Tracer zu entwickeln, die ein genaues Profil der jeweiligen Krankheit liefern.

Die Forschung im Bereich der nuklearmedizinischen Bildgebung befasst sich aktuell mit einer noch optimaleren Nutzung der Daten. Diese moderne Diagnostik soll über die reine Erfassung von Parametern wie Organgrößen oder Glucosestoffwechsel eines Tumors hinausgehen. Geräte neuerer Generation werden dann hohe Detailinformationen wie beispielsweise Tumorheterogenitäten erfassen. Die Menge an Daten muss dafür zielgerichtet verarbeitet und so aufbereitet werden, dass sie dem behandelnden Arzt für eindeutige Therapieentscheidungen zur Verfügung steht. Hier ist künftig eine noch engere Zusammenarbeit zwischen Medizinern, Biologen, Bioinformatikern und Chemikern gefordert. Zudem müssen Disziplinen wie die Bildgebung und Genomics näher zusammen wachsen und sich gegenseitig ergänzen.

Die molekulare Bildgebung bildet ein Schwerpunktthema auf der 53. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin e.V., der NuklearMedizin 2015. Die Tagung findet vom 22. bis 25. April 2015 in Hannover statt. In bewährter Weise bietet die Kombination aus Kongress, für den national und international renommierte Referenten gewonnen werden konnten, einem interaktiven Fortbildungsprogramm sowie der in Deutschland größten, branchenspezifischen Industrieausstellung eine ideale Plattform für wissenschaftlichen Austausch und Weiterbildung. Damit zählt die NuklearMedizin 2015 zu den international bedeutendsten und größten Tagungen für Nuklearmedizin. In diesem Jahr werden rund 2.000 Teilnehmer – Mediziner, Naturwissenschaftler und medizinisch-technisches Personal – erwartet.

Sämtliche Informationen zur NuklearMedizin 2015 stehen auf der Kongresshomepage http://www.nuklearmedizin2015.de zur Verfügung. Dort ist auch die Presseakkreditierung zum Kongress möglich.

Kontakt:
Deutsche Gesellschaft für Nuklearmedizin e.V.
Pressereferat, Stefanie Neu
Nikolaistraße 29, D-37073 Göttingen
Tel. 0551 / 48857-402, info@nuklearmedizin.de
http://www.nuklearmedizin.de

Weitere Informationen:

http://www.nuklearmedizin2015.de - Kongresshomepage der NuklearMedizin 2015
http://www.nuklearmedizin.de - Homepage der Deutschen Gesellschaft für Nuklearmedizin e.V.

DGN e.V. Pressestelle | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen