Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Krankheit auf der Spur: Wie Radiopharmazeutika Stoffwechselveränderungen sichtbar machen

17.04.2015

Die Nuklearmedizin ist ein hochmodernes, sich rasch weiter entwickelndes Fachgebiet, dem eine Schlüsselrolle in der Optimierung der am individuellen Patienten orientierten Medizin zukommt.

Durch gezielte Diagnostik, die molekulare Abläufe im Körper sichtbar macht, können Krankheitsprozesse frühzeitig erkannt und so einer gezielten Behandlung zugeführt werden.

Grundprinzip hierfür sind die Radiopharmazeutika, schwach radioaktiv markierte Moleküle, die mit hoch technisierten Kamerasystemen im Körper sichtbar gemacht werden können. Gerade im Bereich der Krebsmedizin und der Herz-Kreislauf-Erkrankungen trägt die Nuklearmedizin so zu neuen, gezielten Untersuchungen und Behandlungen bei.

Als Ende des 19. Jahrhunderts Wilhelm Conrad Röntgen die nach ihm benannte Röntgenstrahlung entdeckte, kam dies einer Revolution in der Medizin gleich: Strukturen im Inneren des Körpers eines Menschen konnten plötzlich ohne Operation angesehen werden. Seit Röntgens Entdeckung wurden die radiologischen bildgebenden Verfahren immer weiter verfeinert.

Neuere Methoden wie die Computer-Tomographie (CT) ermöglichen inzwischen dreidimensionale Bilder in höchster Auflösung. So können hiermit bereits minimale Größen- oder Formveränderungen an Knochen und Organen erfasst werden.

Neben diesen, auf Röntgenstrahlung basierenden Verfahren kommt in der modernen radiologischen Diagnostik, insbesondere bei Weichteiluntersuchungen, vermehrt die Magnetresonanztomographie (MRT) zum Einsatz. Bei dieser strahlungsfreien Methode werden durch Magnetfelder die Atomkerne (zumeist Wasserstoff) im Inneren des Patienten in Schwingung versetzt. Diese Schwingungen können dann gemessen und mittels Computer in Bilder umgerechnet werden.

Das Feld der Bildgebung hat sich in den vergangenen Jahren enorm weiterentwickelt: Diagnosen molekularer und physiologischer Parameter wie die Erfassung bestimmter Oberflächenrezeptoren auf Tumoren, des Zuckerstoffwechsels oder der Blutperfusion sind jetzt möglich. Diesen Bereich der Bildgebung decken nuklearmedizinische Verfahren wie die Positronen-Emissions-Tomographie (PET) oder die Einzel-Photonen-Emissions-Computer-Tomographie (SPECT) ab.

Sie setzten auf die Darstellung der Funktionen einzelner Organe, indem deren Stoffwechsel sichtbar gemacht wird. Hierzu werden biologisch aktive Moleküle wie Antikörper, Peptide (Eiweißverbindungen) oder Zuckermoleküle, die jeweils schwach radioaktiv markiert sind, als Radiopharmaka in den menschlichen Kreislauf eingeschleust. Diese radioaktiven Moleküle – auch Tracer genannt – reichern sich hauptsächlich am krankhaft veränderten Gewebe an, so beispielsweise an Tumoren oder etwa bei der Alzheimer-Demenz an gefährlichen Eiweißablagerungen im Gehirn.

Im PET- oder SPECT-Verfahren wird die vom Radiopharmakon ausgehende Strahlung gemessen und in Bilder umgerechnet. Gerade in kombinierten Untersuchungsgeräten wie dem PET/CT oder PET/MR kann zum einen die Anatomie hochaufgelöst in 3D dargestellt und zum anderen mit der molekularen Information überlagert werden.

Somit lassen sich die krankhaften Veränderungen nicht nur punktgenau lokalisieren, sondern es kann über ihren dargestellten Stoffwechsel auch noch ihre Aggressivität abgeschätzt werden. Diese Technologien kommen vor allem in den Bereichen der Onkologie (sowohl für die Tumordiagnose als auch zur Kontrolle des Therapieerfolgs), der Neurologie (Alzheimer Demenz und Parkinson), der Kardiologie wie auch bei Infektionserkrankungen zur Anwendung.

Neben der Diagnose werden diese nuklearmedizinischen Verfahren auch für die Therapiekontrolle eingesetzt. Der große Vorteil der nuklearmedizinischen Bildgebung liegt darin, dass mit einer einzelnen Untersuchung der gesamte Körper auf Primärtumore und Metastasen abgesucht werden kann. Dies ermöglicht im Anschluss an die Diagnose auch eine individuellere Behandlung des Patienten, da so gezielt gegen die einzelnen Krankheitsherde vorgegangen werden kann. Diese Bildgebung ist daher ein wesentlicher Baustein in der Umsetzung der sogenannten patientenindividualisierten Therapie. Sie fördert die Verabreichung von patientenspezifischen Medikamenten und hat zudem den Vorteil, dass Krankheiten ganzheitlich erfasst und Krankheitsprozesse und Therapien zeitlich verfolgt werden können.

Um das Potential der molekularen Bildgebungsmethoden ausschöpfen zu können, ist es notwendig, die entsprechenden Marker weiterzuentwickeln. Diese Fortentwicklung der einzelnen Tracer hängt sehr stark vom medizinischen Fortschritt ab: je besser einzelne Krankheitsprozesse verstanden und krankheitsspezifische Oberflächenmoleküle an krankhaft verändertem Gewebe und Zellen spezifiziert werden können, desto besser gelingt es, Tracer zu entwickeln, die ein genaues Profil der jeweiligen Krankheit liefern.

Die Forschung im Bereich der nuklearmedizinischen Bildgebung befasst sich aktuell mit einer noch optimaleren Nutzung der Daten. Diese moderne Diagnostik soll über die reine Erfassung von Parametern wie Organgrößen oder Glucosestoffwechsel eines Tumors hinausgehen. Geräte neuerer Generation werden dann hohe Detailinformationen wie beispielsweise Tumorheterogenitäten erfassen. Die Menge an Daten muss dafür zielgerichtet verarbeitet und so aufbereitet werden, dass sie dem behandelnden Arzt für eindeutige Therapieentscheidungen zur Verfügung steht. Hier ist künftig eine noch engere Zusammenarbeit zwischen Medizinern, Biologen, Bioinformatikern und Chemikern gefordert. Zudem müssen Disziplinen wie die Bildgebung und Genomics näher zusammen wachsen und sich gegenseitig ergänzen.

Die molekulare Bildgebung bildet ein Schwerpunktthema auf der 53. Jahrestagung der Deutschen Gesellschaft für Nuklearmedizin e.V., der NuklearMedizin 2015. Die Tagung findet vom 22. bis 25. April 2015 in Hannover statt. In bewährter Weise bietet die Kombination aus Kongress, für den national und international renommierte Referenten gewonnen werden konnten, einem interaktiven Fortbildungsprogramm sowie der in Deutschland größten, branchenspezifischen Industrieausstellung eine ideale Plattform für wissenschaftlichen Austausch und Weiterbildung. Damit zählt die NuklearMedizin 2015 zu den international bedeutendsten und größten Tagungen für Nuklearmedizin. In diesem Jahr werden rund 2.000 Teilnehmer – Mediziner, Naturwissenschaftler und medizinisch-technisches Personal – erwartet.

Sämtliche Informationen zur NuklearMedizin 2015 stehen auf der Kongresshomepage http://www.nuklearmedizin2015.de zur Verfügung. Dort ist auch die Presseakkreditierung zum Kongress möglich.

Kontakt:
Deutsche Gesellschaft für Nuklearmedizin e.V.
Pressereferat, Stefanie Neu
Nikolaistraße 29, D-37073 Göttingen
Tel. 0551 / 48857-402, info@nuklearmedizin.de
http://www.nuklearmedizin.de

Weitere Informationen:

http://www.nuklearmedizin2015.de - Kongresshomepage der NuklearMedizin 2015
http://www.nuklearmedizin.de - Homepage der Deutschen Gesellschaft für Nuklearmedizin e.V.

DGN e.V. Pressestelle | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Therapieansätze bei RET-Fusion - Zwei neue Inhibitoren gegen Treibermutation
26.06.2017 | Uniklinik Köln

nachricht Bei Notfällen wie Herzinfarkt und Schlaganfall immer den Notruf 112 wählen: Jede Minute zählt!
22.06.2017 | Deutsche Herzstiftung e.V./Deutsche Stiftung für Herzforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie