Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Defekte Knorpel im Bioreaktor

25.02.2014
Bevor neue Produkte in der Medizin zum Einsatz kommen, müssen sie häufig auch im Tierversuch getestet werden. Die Nachwuchswissenschaftlerin Jenny Weyhmüller Reboredo forscht am Lehrstuhl für Tissue Engineering und Regenerative Medizin an einer Technik, die diese Versuche ersetzen soll.

Knorpelschäden sind eine der Hauptursachen für chronische Schmerzen, eingeschränkte Beweglichkeit und einen Verlust an Lebensqualität. Arthrose ist die häufigste aller Gelenkerkrankungen. Weltweit sollen mehr als 150 Millionen Menschen davon betroffen sein; in Deutschland leiden mehr als fünf Millionen Menschen daran. Sportverletzungen können die Ursache sein, aber genauso auch ein normaler Altersverschleiß.

Kleiner Defekt mit gravierenden Folgen

Am Anfang steht häufig nur ein kleiner Defekt, der weiter wächst, weil der Körper nicht in der Lage ist, Knorpelgewebe selbst neu zu bilden. Ist die Knorpelschicht großflächig zerstört, ist ein operativer Eingriff in der Regel unumgänglich. In schweren Fällen bleibt dann der Einsatz eines künstlichen Gelenks einzige Alternative.

Damit es erst gar nicht so weit kommt, arbeiten Forscher weltweit an neuen Methoden, die es ermöglichen, kleine Defekte möglichst frühzeitig zu erkennen und zu behandeln. Das Problem dabei: Bevor ein neues medizin-technisches Produkt auf den Markt kommt, muss es ein aufwändiges mehrstufiges Zulassungsverfahren durchlaufen. Tests an Versuchstieren sind dabei in der Regel nicht vermeidbar.

Knorpel naturgetreu nachbauen

Das zu ändern: Daran arbeitet die Nachwuchswissenschaftlerin Jenny Weyhmüller Reboredo am Lehrstuhl für Tissue Engineering und Regenerative Medizin des Würzburger Universitätsklinikums. Im Labor will sie Knorpelmaterial so naturgetreu wie möglich „nachbauen“ und über einen möglichst langen Zeitraum am Leben erhalten. Wenn alles klappt, wie sie es sich vorstellt, könnte dieses dreidimensionale „Knorpel-Defektmodell“ Tierversuche zumindest teilweise ersetzen.

„Wir nehmen ein kleines Stück Knorpel und Knochen aus einem tierischen Gelenk und versuchen, in einem sogenannte Bioreaktor die natürliche Umgebung möglichst naturgetreu nachzubilden“, beschreibt Jenny Weyhmüller Reboredo die Aufgabe. Was sich scheinbar simpel anhört, ist in der Realität ziemlich komplex.

Eine Diplom-Ingenieurin in den Lebenswissenschaften

Zuerst müssen die Wissenschaftlerin und ihr Team die passende Technik entwickeln – angefangen bei den Werkzeugen zur Entnahme der Gewebeproben bis hin zum Bioreaktor. Da trifft es sich gut, dass Jenny Weyhmüller Reboredo an der Universität Stuttgart einen technischen Studiengang absolviert hat: Technologie-Management. „Das Studium war in weiten Bereichen identisch mit einem Maschinenbau-Studium; zusätzlich gab es Vorlesungen und Seminare aus der Betriebswirtschaftslehre“, erklärt sie. Sie selbst hat sich nach dem Vordiplom auf die Bereiche Medizin- und Lasertechnik spezialisiert. Und mittlerweile hat die Diplom-Ingenieurin noch eine naturwissenschaftliche Promotion „draufgesattelt“.

Damit die nur wenige Millimeter große Gewebeprobe für entsprechende Untersuchungen zur Verfügung steht, muss sie in dem Bioreaktor eine passende Umgebung vorfinden. Dazu gehören unter anderem eine Temperatur von 37 Grad Celsius, eine Versorgung mit den notwendigen Nährstoffen, sauerstoffarme Bedingungen, weil Knorpel auch im Körper nicht an den Blutkreislauf angeschlossen ist, und eine regelmäßige mechanische Belastung. „Die Kulturkette optimieren, damit das Gewebe nicht abstirbt“, nennt Jenny Weyhmüller Reboredo diesen Teil ihrer Aufgabe. Im Idealfall lässt sich dann an diesen Gewebeproben untersuchen, wie neuartige Biomaterialien Knorpeldefekte reparieren können und welche Auswirkungen sie auf den Körper haben.

Knorpelgewebe aus dem Bausatz

Eine existierende Gewebeprobe am Leben erhalten, ist allerdings nur ein Teil von Jenny Weyhmüller Reboredos Forschungsprojekt. Der zweite Teil ist komplizierter: Dabei „bastelt“ sich die Wissenschaftlerin ihr Knorpelmodell selbst. Ebenfalls im Bioreaktor wird sie ein geeignetes Trägermaterial mit den notwendigen Zellen besiedeln und mit Nährstoffen besorgen. Stimmen die Bedingungen, wächst ein Knorpelgewebe heran, das mit dem natürlichen weitestgehend identisch ist. Auch daran ließen sich in Zukunft neue Materialien tierversuchsfrei testen.

Zwei Jahre hat Jenny Weyhmüller Reboredo jetzt Zeit, an dem Knorpel-Defektmodell zu forschen. Dafür hat sie ein Stipendium der „Peter und Traudl Engelhorn Stiftung zur Förderung der Biotechnologie und Gentechnik“ über rund 110.000 Euro erhalten. Was sie an dieser Aufgabe auch reizt, ist der Brückenschlag zwischen den Ingenieur- und den Lebenswissenschaften. Während der Biologe alles über die Nährstoffversorgung von Knorpel wisse, komme er doch sehr schnell an seine Grenzen, wenn es darum geht, eine technische Zeichnung für die Arbeiter in der Werkstatt zu erstellen, sagt sie. Jenny Weyhmüller Reboredo beherrscht beide Aspekte.

Kontakt

Jenny Weyhmüller Reboredo, T: (0931) 31-82594; jenny.reboredo@uni-wuerzburg.de   

Gunnar Bartsch | idw

Weitere Berichte zu: Bioreaktor Gewebeproben Knorpel Knorpelgewebe

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Stoßlüften ist besser als gekippte Fenster
29.03.2017 | Technische Universität München

nachricht Dimethylfumarat – eine neue Behandlungsoption für Lymphome
28.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten